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Abstract: In modern civil engineering, precisely predicting 
the mechanical properties of waste-modified geopolymer 
concrete is a vital challenge. Machine learning (ML) offers 
a powerful tool for such predictive analysis. This article 
presents an experimental and python-based intelligent 
ML modeling study on a type of geopolymer (GP) pervious 
concretes developed using agro-industrial waste products. 
The slag-based composite mixes were developed with the 
varying dosages of agro-waste, i.e., sugarcane bagasse 
ash (0 to 20% by weight of slag) and construction and 
demolition waste in the form of recycled coarse aggregates 
(0 to 100% by weight of natural aggregates). The aqueous 
solution of liquid Na2SiO3 and NaOH pellets were used 
as an alkali activator solution. A total of 13 different 
mix proportion designs were developed, and for every 
individual sample mix, the results were obtained from 
laboratory tests. The ML analysis was carried out to 
compute the compressive strength by applying following 
models: Multiple Linear Regression, tuned Gradient 
Boost, AdaBoost, and XGBoost Regressions. Further, an 
ensemble technique that combines the predictions from 
multiple ML algorithms together to make more accurate 
predictions than any individual model was also developed 
for a more accurate and robust prediction through the 
“Voting Regressor” technique. From the analysis of the 
obtained results, the ML models associated with Ada 
Boost tuned performed better. As the ensemble voting 
regressor models were given higher weightage, these 

regressors gave the best performance metrics, with lower 
error rate compared to the independent models.

Keywords: Compressive Strength; Agro-Industrial 
Wastes; Machine Learning; Geopolymer; Pervious 
Concrete.

1  Introduction

1.1  General

The construction industry stands at a cross-road, facing  
the dual challenges of meeting global infrastructure 
demands and mitigating its environmental footprint. 
Central to this challenge is the industry’s reliance 
on ordinary Portland cement (OPC), the production 
of which is notably carbon-intensive. Studies have 
quantified the environmental burden of OPC production, 
revealing that approximately 0.73–0.85 tonnes of CO2 
are emitted for every ton of OPC produced, spotlighting 
the urgent need for sustainable alternatives in concrete 
manufacturing[1]. Furthermore, the burgeoning issue 
of construction waste, alongside the overproduction of 
industrial by-products like fly ash and slag, necessitates 
a shift toward sustainable construction methodologies. 
The world generates billions of tons of construction 
waste annually, a significant portion of which remains 
underutilized, contributing to environmental degradation 
[2]. Geopolymer (GP) and Alkali-Activated Cements (AACs) 
emerge as a formidable nominee in this framework, 
offering a viable pathway to curtail the carbon emissions 
associated with traditional cement[3]. Hence, the GPs 
emerge as a beacon of sustainability in this landscape, 
offering a robust framework for recycling and reusing 
construction and industrial waste. These are synthesized 
from aluminosilicate materials to proposing a significant 
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reduction in CO2 emissions and also proven to be 
excelling in mechanical performances and durability 
aspects compared to OPC-based materials[4]. The global 
warming potential of GPs is markedly lower primarily due 
to their synthesis from industrial by-products, thereby 
circumnavigating the energy-intensive clinker production 
process inherent in OPC manufacturing​ [5]. 

This research pivots on the development of a novel 
slag-based GP pervious concrete, hybridized with an agro-
waste, i.e., sugarcane bagasse ash (SBA) and construction-
demolition (C&D) wastes, steering the conversation 
toward circular economy in construction. The utilization 
of such waste materials not only addresses the disposal 
issue but also enhances the sustainability quotient of 
the concrete produced. SBA, an agricultural by-product, 
and C&D wastes, typically viewed as landfill fodder, are 
thus valorized, contributing to waste minimization and 
resource efficiency. Soft computing models stand at the 
forefront of this research, offering a nuanced approach 
to predicting and optimizing the mechanical properties 
of these novel concrete mixtures. By integrating machine 
learning (ML) techniques, this study aims to refine the 
prediction accuracy of the concrete’s strength, providing 
a robust framework for the application of these materials 
in real-world scenarios. This computational approach 
aligns with the emphasis on innovative applications of 
computing in civil engineering, heralding a new era of 
data-driven material science. 

The urgency to transition to sustainable construction 
practices is further amplified by the dire warnings of 
climate scientists. The alarming trajectory of global 
warming, exacerbated by the construction sector’s carbon 
emissions, necessitates a paradigm shift toward materials 
that reduce the carbon footprint. GPs present a promising 
solution in this regard, offering a sustainable alternative 
to OPC by harnessing the latent hydraulic properties of 
industrial by-products. GPs not only contribute to the 
reduction of CO2 emissions but also promise enhancements 
in the material properties of concrete, including superior 
mechanical strength and durability, fostering the 
advancement of green construction materials [6]. Hence, 
this research underscores the imperative for innovative, 
sustainable construction materials, with a particular 
focus on GP pervious concrete enhanced with industrial 
and agricultural wastes. By incorporating advanced 
computational models with sustainable material science, 
this study aims to contribute significantly to the field, 
offering insights and methodologies that align with the 
urgent call for environmental stewardship in construction 
practices. Moreover, the prediction of the mechanical 
properties of any type of GP pervious concretes is 

considered very much challenging due to the complex 
interactions between its heterogeneous components, 
including various types of industrial by-products and 
the specific conditions required for the alkali-activation. 
This work contributes by leveraging ML to unstitch 
these intricate relationships, offering a more accurate, 
efficient predictive approach. Hence, this research directly 
addresses the challenge by utilizing data-driven models 
to forecast pervious GPC’s behavior, thereby guiding 
the optimization of sustainable concretes. Through this 
endeavor, the study also addresses a critical gap in the 
current literature and lays down a clear pathway for future 
research in sustainable construction materials, resonating 
with the global agenda for sustainable development and 
climate resilience.

1.2  Review on Earlier Studies in Soft 
Computing Applications in AAC and GPC 
mixes

The advent of GPC/AAC represents a significant leap 
toward sustainable construction practices, aligning with 
the global impetus to reduce the environmental footprint 
of the building industry. This novel material, synthesized 
from industrial by-products, would effectively not only 
addresses the urgent need to repurpose waste but also 
offers enhanced mechanical properties and durability 
compared to traditional Portland cement. The integration 
of such soft computing models offers a novel paradigm 
to address complex, nonlinear problems inherent in the 
concrete research, ranging from mix design optimization to 
performance prediction under various conditions. Hence, 
these advanced models facilitate a deeper understanding 
of the complex interplay between GPC’s compositional 
variables and its mechanical attributes, enabling the 
optimization of mix designs for tailored applications. As 
the construction sector continues to evolve, the fusion of 
materials science and computational intelligence heralds 
a new era of innovation, where the accelerated design and 
deployment of high-performance, eco-friendly materials 
become a tangible reality. Table 1 collates seminal works 
in the domain, illustrating the scope, methodologies, and 
breakthroughs achieved through the application of soft 
computing specific to GPC/AAC research, thereby setting 
a comprehensive backdrop for the ensuing discussion on 
the subject.

To identify which soft computing method was 
determined to be the best across the reported studies, 
one would typically look for the method that consistently 
showed high accuracy, low error rates, and good 
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Table 1: Thematic Categorization of Selected Soft Computing Models Used in AAC/GPC Research.

Ref. Model Key Findings Attributes Future Scopes

[7] ANN Effectively predicted the strength variation due 
to molar concentration changes in activator 
solutions with R² values over 0.96

Predicting strength with the 
use of 70% results for training 
and 30% sample results for 
testing

Further refine ANN models to 
enhance predictive accuracy

[8] GEP Developed numerical models to predict GGBS-
based GPC strength, demonstrating high 
accuracy and validation with R² values ranging 
from 0.97 to 0.99

Compressive strength 
prediction of GGBS-based GPC 
with the use of 351 samples

Expand GEP models to include 
more variables influencing GPC 
properties

[9] GEP Predict the compressive strength of bacteria-
incorporated GPC, showing minimal error 
against experimental data

Modeling compressive strength 
of bacteria-incorporated GPC

Explore GEP’s application in 
other GPC types with different 
admixtures

[10] RFR 
and
GEP

RFR and GEP were applied to develop empirical 
models predicting fly-ash GPC strength, where 
RFR showed better performance through 
statistical error checks

Strength prediction of GPC 
using advanced soft computing 
methods developed through 
298 datasets

Compare these models against 
other ML techniques for broader 
applicability

[11] AI 
tools

AI techniques like GP, RVM, and GPR showed 
high accuracies in predicting GPC strength with 
R² values in the range of 0.93–0.99

AI-assisted mix-design tool for 
GPC

Test these AI models in real-
world mix-design scenarios for 
validation

[12] GEP GEP provided an empirical equation for GPC 
strength prediction using FA, showing good 
model accuracy and generalization capability

Estimating GPC compressive 
strength using GEP developed 
through 298 datasets

Enhance the GEP model by 
incorporating more diverse 
datasets

[13] ANN,
 RSM,
and
GEP

Comparative analysis of ANN, RSM, and GEP 
showed RSM and ANN outperformed GEP 
in accuracy for predicting the strength of 
engineered GP composite (EGC)

Predictive modeling of EGC 
compressive strength. The RSM 
showed 96% accuracy, whereas 
the ANN had 93%

Improve GEP models or explore 
hybrid approaches for better 
prediction in EGC

[14] ML Ensembled ML techniques, particularly AdaBoost 
and random forest, outperformed individual 
methods in predicting GPC strength, and the 
R² values of 0.90 for ensemble methods were 
obtained.

Applying ML for strength 
prediction of GP composites; 
AdaBoost and random forest 
showed superior predictions

Further explore the potential 
of ensembling techniques in 
predictive accuracy improvement

[15] ANN, 
M5P-Tree, 
LR, and
MLR

ANN model excelled in predicting the 
compressive strength of GGBS/FA-based GPC, 
showcasing its potential over other models

Compressive strength 
prediction for 
GPCcompositesdeveloped 
through 220 datasets

Enhance model reliability with 
broader datasets and explore 
real-time prediction capabilities

[16] ANN ANN models showed promise in predicting 
strength characteristics of AAC masonry 
blocks, with significant accuracy in training and 
validation phases

Strength prediction for alkali-
activated masonry blocks 
developed through 108 
datasets

Validate ANN models in diverse 
AAC formulations and structural 
applications

[17] GEP GEP demonstrated high accuracy in predicting 
the compressive strength of FRGC, supporting 
its use in optimizing concrete mixes; R² values in 
the range of 0.97–0.99 indicating GEP’s robust 
performance and reliability

Predictive modeling for fiber-
reinforced geopolymer concrete 
(FRGC)developed through 393 
datasets

Apply GEP in broader FRGC 
applications and investigate 
other fiber types and contents

[5] ANN, 
MPR, 
and
SA-LR

Utilized ANN and advanced regression 
techniques for predicting the performance of 
high-strength GPC, focusing on sustainable and 
cost-effective solutions

Optimization of high-
performance GPC mixes, with 
the use of 81 sample data

Extend analysis to include long-
term performance and durability 
predictions
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generalization capabilities across different datasets. From 
the summarized details shown in Table 1, methods like 
GEP, AdaBoost, and RVM have shown high R² values or 
have been explicitly mentioned as outperforming others 
in the respective studies, indicating their effectiveness 
in modeling and prediction tasks within the context of 
geopolymer concrete research. However, each study might 
have found a particular method to be the best based on 
its specific dataset and objectives. For instance, AdaBoost 
showed a high R² value, indicating its strong predictive 
performance. Similarly, RVM’s high R² value suggests that 
it effectively captures the underlying patterns in the data, 
making it a robust choice for predicting the properties of 
GPC. Overall, it can be believed that while several soft 
computing methods demonstrated high accuracy and 
predictive capabilities, the “best” method could vary 
depending on specific study goals, data characteristics, 

and performance metrics used. However, methods 
like AdaBoost and RVM stood out in their respective 
studies for their predictive prowess. The effectiveness 
of a particular method, such as AdaBoost’s ensemble 
approach or RVM’s kernel-based learning, often hinges on 
how well it can generalize from the training data to make 
accurate predictions on unseen data, as evidenced by 
their performance metrics. Hence, for a detailed selection 
of the best method, one would need to consider not only 
the accuracy (like R² values) but also other performance 
metrics and the context of each study, including the nature 
of the dataset and the specific prediction tasks. Each 
method’s strengths and weaknesses should be weighed 
against the research objectives and the characteristics of 
the data being analyzed.

Ref. Model Key Findings Attributes Future Scopes

[18] NSGA-II
and
BPNN

Introduced a multi-objective optimization 
approach using NSGA-II and BPNN for 
geopolymer mix design, balancing mechanical, 
environmental, and economic factors; R² and 
other statistical tests were used for validation

Mix design optimization for fly 
ash-based GPC mixes, with the 
use of 896 sample data

Expand optimization frameworks 
to incorporate additional 
environmental and durability 
criteria

[19] LR, 
ANN, 
and
AdaBoost

AdaBoost model showcased superior 
prediction accuracy with the highest R² value 
for the compressive strength of FlA-based GPC 
compared to conventional machine learning 
models

Enhancing predictive accuracy 
for FlA-based GPC strength

Investigate AdaBoost’s 
application in predicting other 
relevant concrete properties

[20] SVR 
and
GWO

The study applied SVR combined with GWO to 
predict the compressive strength of GGBFS-
based geopolymer concrete, showing high 
accuracy and potential for optimization; R² value 
for SVR-GWO was 0.95

Prediction of compressive 
strength for GGBFS-based 
GPC developed through 268 
datasets

Explore the integration of GWO 
with other predictive models 
for enhanced optimization and 
prediction

[21] LSTM Employed LSTM to forecast the compressive 
strength of FAGC, introducing a novel approach 
with optimized LSTM parameters for better 
prediction accuracy

Compressive strength 
prediction in FAGC using LSTM 
developed using 162 datasets

Further refine LSTM models and 
explore their application in real-
time monitoring and control of 
GPC properties

[22] XGB
and
SVM

The study compared XGB and SVM for predicting 
the slumpand strength of AAC, finding XGB to 
perform significantly better with higher R² values 
(respective R2 values of 0.94 and 0.97 for slump 
and strength), providing a robust tool for AAC 
mix design

Slump and compressive 
strength prediction in AAC with 
a total of 193 datasets

Investigate the applicability 
of XGB in broader contexts 
of AAC production and other 
performance parameters

Abbreviations: AdaBoost: Adaptive Boosting; AI Techniques: artificial intelligence techniques; ANN: artificial neural network; BPNN:back 
propagation neural network; GEP:gene expression programing; GWO: Grey Wolf Optimization; LR: linear regression; LSTM: long short-term 
memory; ML: machine learning; MLR: multiple linear regression; MPR: multilinear regression; M5P-Tree: M5’ regression tree; NSGA-II: 
nondominated sorting genetic algorithm II; RFR: random forest regression; RSM: response surface methodology; SVM: support vector 
machine; SVR: support vector regression; SA-LR: linear regression models enhanced by swarm optimization; XGB: extreme gradient 
boosting.

ContinuedTable 1: Thematic Categorization of Selected Soft Computing Models Used in AAC/GPC Research.
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1.3  Research Gaps and Specific Objectives of 
Current Investigations

The previous studies have extensively explored individual 
soft computing techniques for predicting compressive 
strength of GPC/AAC mixes. The exploration of such models 
in the scope of the study represents a promising frontier, 
particularly when these materials are integrated with 
sustainability-enhancing components like agro-industrial 
wastes. The literature studies strongly reveal a burgeoning 
interest in optimizing GPC properties through advanced 
computational techniques, yet a discernible gap persists 
in the specific domain of pervious concretes developed 
using geopolymers and alkali-activated binders. Notably, 
the intersection of soft computing with the utilization of 
agricultural by-products with the utilization of industrial 
wastes such as C&D wastes, foundry wastes, and steel 
industry wastes in creating pervious alkali-activated 
binder-based concretes remains underexplored. This 
research niche holds significant potential for advancing 
total sustainable construction practices, leveraging the 
inherent benefits of AAC technology,such as reduced 
carbon footprint and enhanced material reuse, while 
incorporating the permeability attributes essential for 
modern infrastructure requirements.

Hence, the current investigation seeks to bridge 
this gap by focusing on pervious geopolymer concretes 
enhanced with the utilization of specific agro-waste 
material and industrial by-products, thereby pushing the 
boundaries of sustainability in construction materials. 

Moreover, the integration of soft computing models to 
predict and optimize the unique properties of these novel 
concretes represents an innovative approach that melds 
computational intelligence with sustainable material 
science. By addressing these gaps, this research outcome 
will strongly contribute to the academic discourse that 
paves the way for practical advancements in sustainable 
construction, promoting enhanced environmental 
stewardship and resource efficiency in the industry. 
Hence, under the broad scope of soft computing, the 
present investigation specifically includes comparisons 
of four established and less used ML models. These are 
Multiple Linear Regression, Gradient Boost, AdaBoost, 
and, XGBoost Regressions. Total of 156 datasets have 
been studied, which are cautiously developed in the 
sophisticated laboratory. 

The detailed literature review focusing on the reported 
literatures on soft computing in similar concretes was also 
carried out to find out the performance of various models. 
Furthermore, an ensemble technique that combines 
the predictions from multiple ML algorithms together 
to make more accurate predictions than any individual 
model was also developed. The performance of the 
developed models was evaluated through the statistical 
score values, including root mean squared error (RMSE), 
mean absolute error (MAE), mean squared error (MSE), 
R2score, and coefficient of variation (CV) mean, and the 
overall comparison of the models were made. Generalized 
flow diagram showcasing the soft-computing scope of the 
article is presented in Figure 1.

 

Figure 1: Flowchart showing the experimentation and development of soft computing models.
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2  Materials and Experimental 
Methods 

2.1  Material Properties

The iron and steel industry by-product in the ground 
form (Ground Granulated Blas Furnace Slag,i.e., GGBS) is 
used as a major binder, and agro-waste, called sugarcane 
bagasse ash (AWA, i.e., SBA), was used as a substitute to 
binder at different levels. The GGBS was characterized 
by a specific gravity of 2.89 and a fineness of 360 m²/kg, 
containing major chemical oxides such as 38.12% silica 
(i.e., SiO2), 36.89% lime (i.e., CaO), 14.52% alumina (i.e., 
Al2O3), 7.60% magnesium oxide (i.e., MgO), and 1.15% 
iron oxide (i.e., Fe2O3). Whereas the SBA was tested with 
a specific gravity of 2.49 and a fineness of 462 m²/kg, 
comprisedwith 59.28% silica, 16.08% alumina, 8.10% 
lime, 5.85% iron oxide, and 4.80% magnesium oxide.

Two types of coarse aggregates were utilized in this 
study: naturally crushed granite coarse aggregates (NCA) 
and recycled coarse aggregates (RCA) sourced from 
demolished building materials, with respective specific 
gravities of 2.68 and 2.53. Given the nature of pervious 
concrete, which requires minimal fine aggregate, the coarse 
to fine aggregate ratio was consistently maintained at 9:1 
throughout research. Additionally, waste foundry sand 
(WFS), an industrial by-product from the metal casting 
industry, was engaged as the fine aggregate, exhibiting 
a specific gravity of 2.56. All mechanical testing on the 
aggregates was carried out in accordance with relevant 

standards [23–26]. The results of particle size distribution 
of all these ingredients are presented in Figure 2. The 
alkaline activator solution for the concrete mixes was 
formulated using 98% pure sodium hydroxide (NaOH) 
flakes and liquid sodium silicate (LSS, i.e., Na2SiO3), 
sourced from local chemists. The LSS had 14.70% sodium 
oxide, 32.80% silicon dioxide, and 52.50% water, with 
a specific gravity of 1.57, while NaOH featured a specific 
gravity of 2.10. The mixture was created by blending NaOH 
with LSS to achieve a target activator modulus (i.e., Ms 
value which is the ratio of SiO2 to Na2O) and adjusting the 
water-to-binder ratio initially to 0.20 and then to 0.40 for 
mix preparation by the use of laboratory tap water. The 
prepared alkali activator solution was left in a sealed 
container for a minimum duration of 24 hours before 
use to ensure consistency in the chemical properties for 
optimal concrete mix performance.

2.2  Mix Design Strategies of GPC Mixes

The mix design for geopolymer pervious concrete was 
developed following the basic guidelines outlined in IRC: 
44-2017 [27], aiming for a low-slump concrete (<25 mm) 
with a target compressive strength of 20 MPa. This design 
was adapted to create a slag-based geopolymer concrete 
(GPC) mix, leveraging insights from previous studies 
[3,28]. A satisfactory mix was achieved with 290 kg of total 
binding material (GGBS) per cubic meter of concrete and 
a water-to-binder (w/b) ratio of 0.40. The mix maintained 
a minimum percolation rate of 300 mm per minute, 

Figure 2: Particle size distribution of binder materials and aggregates.
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corresponding to a Darcy’s coefficient of permeability of 
5.0 cm/s. The total water content in the activator solution 
combined water from the liquid sodium silicate (LSS) 
solution with additional water to achieve the desired water 
content. Alkali activator solutions (AS) were tailored for 
each mix to provide a 4% Na2O dosage by binder weight, 
with a consistent activator modulus (Ms value) of 1.25. Tap 
water was used to produce the aqueous-alkali solution.

Initially, GGBS served as the primary binder, with 
systematic replacements by SBA ranging from 0% to 
20% in 5% increments. To optimize the level of RCA, 
adjustments were made from 0% to 100% in place of 
NCA. Based on testing, mixes with 0% and 50% RCA were 
further adjusted for SBA content. This approach resulted 
in 13 distinct mix designs, which is detailed in Table 2. 
Each mix, identified by unique Mix IDs like “M-5-50,” 
indicates a composition of 5% SBA and 50% RCA. For 
each formulation, 12 individual cube samples of size 
100-mm facedimension were prepared and air-cured 
for 28 days before compressive strength (CS) testing as 
per standard directives [29]. The freshly made mixture is 
poured into the standard mold in 3 layers, with each layer 
being thoroughly compacted using a table vibrator. It is 
then carefully finished and left to air-cure in laboratory 
conditions. This resulted in 156 cube samples across 
all mixes. The glances of casting, air curing and testing 
sequence are presented in Figure 3. Additionally, in an 
analogous manner,3 cylindrical samples from each mix 
of size 100 mm dia. and 200 mm ht. were prepared and 

tested for hydraulic conductivity using the falling-head 
permeability method, as documented in literature studies 
[30,31].

2.3  Development of Machine Learning (ML) 
Models

ML algorithms are highly capable of integrating a variety 
of complex parameters, including material properties, mix 
design, environmental conditions, and curing processes, 
which all influence the final strength of concrete. This 
predictive capability of ML is proven to be crucial for 
the optimization of the material mix and ensuring the 
structural integrity with sustainability in construction 
projects without the need for extensive physical trial and 
error, which can be costly and time-consuming. Hence, 
utilizing ML allows for a more accurate and efficient 
analysis of the parameters, thereby improving the 
predictability of concrete’s performance characteristics 
[32,33]. 

2.3.1  Proposed ML Architecture

Figure 4 presents the flow diagram of the proposed ML 
modeling architecture adopted under the current scope 
of the investigations. Initially, the “dataset” is introduced 
into the system, where it undergoes “data preprocessing.” 

Table 2: Mix Proportion Details for 1 m3 Geopolymer Pervious Concrete Preparations in kg.

Mix ID GGBS AWA NaOH LSS Water AS NCA RCA FA

M-0-0 290 0 6.583 44.207 92.791 143.58 1881.3 0 199.7

M-0-25 290 0 6.583 44.207 92.791 143.58 1411.03 444.01 199.7

M-0-50 290 0 6.583 44.207 92.791 143.58 940.68 888.03 199.7

M-0-75 290 0 6.583 44.207 92.791 143.58 470.34 1332.05 199.7

M-0-100 290 0 6.583 44.207 92.791 143.58 0 1776.07 199.7

M-5-0 275.5 14.5 6.583 44.207 92.791 143.58 1878.13 0 199.3

M-10-0 261 29 6.583 44.207 92.791 143.58 1874.89 0 198.9

M-15-0 246.5 43.5 6.583 44.207 92.791 143.58 1871.65 0 198.6

M-20-0 232 58 6.583 44.207 92.791 143.58 1868.42 0 198.3

M-5-50 275.5 14.5 6.583 44.207 92.791 143.58 939.065 886.505 199.3

M-10-50 261 29 6.583 44.207 92.791 143.58 937.45 884.98 198.9

M-15-50 246.5 43.5 6.583 44.207 92.791 143.58 935.83 883.45 198.6

M-20-50 232 58 6.583 44.207 92.791 143.58 934.21 881.92 198.3



356    Shriram Marathe, Anisha P Rodrigues

This initial step includes a “cleansing” phase that checks 
for “null, missing values.” If present, these are addressed 
before proceeding. Upon ensuring data integrity, the 
process applies “normalization and standard scalar” 
methods to standardize the scale of the data features, which 
is decisive for Ml model performance and comparison. 
Once the data are standardized, they are divided into two 
distinct sets for “training” and “testing,” with 70% of the 
data owed for ML model training to capture the underlying 
data patterns and 30% reserved for testing to validate 
model predictions against concealed data. Following the 
application of the various ML model algorithms, the “data 
calibration and verification” was adopted to refine the 
models and to ensure that the predictions align closely 
with the actual data. The process iteratively returned to 
model application if the error rates are not within accepted 
limits. The “evaluation metrics” play a critical role in 
assessing model performance. These statistical metrics 
help to quantify the accuracy, precision, and reliability of 
the models. Finally, if the errors are acceptable, indicating 
that the ML model’s predictions are within a satisfactory 
range, the process was concluded. If not, the models are 
recalibrated and revalidated to improve its accuracy. This 
ML model architecture is designed to be rigorous and 
iterative, enhancing the developed ML model’s ability to 
predict the CS of pervious GPC with high precision.

2.3.2  Brief Description of the Proposed ML Models

Specifically, multiple linear regression, Gradient Boost, 
AdaBoost, and, XGBoost Regressions are applied. Brief 
details on every individual ML models are presented 
under the following section:

	– Multiple linear regression(MLR) model: The MLR 
is a statistical technique employed to predict the 
outcome of a dependent variable based on two or more 
independent variables. This method is instrumental 
in analyzing how variations in independent variables 
contribute to the overall variance in the dependent 
variable. This method allows for the assessment of 
individual contributions from each independent 
(predictive) variable, providing insights into the 
relationships within the data. This approach 
is considered vital for understanding complex 
interactions in various scientific and engineering 
applications [32].

	– Gradient Boost Regression (GBR) model: The 
GBR utilizes a class within the Scikit-Learn library 
designed specifically for regression tasks. This method 
capitalizes on the concept of boosting, an ensemble 
technique that combines multiple weak predictive 
models to create a stronger aggregate model. GBR is 
fundamentally built on decision trees, structuring 
predictions beginning from the root and branching 
out based on various conditions until reaching the 
leaves, which represent the final prediction outcomes. 

 

 

 

 

 

 

Figure 3: Preparation, air-curing, and testing sequence of geopolymer pervious concrete specimens.
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The effectiveness of each iterative improvement in 
GBR depends on the “learning rate,” a parameter that 
determines the magnitude of adjustment made to the 
model with each successive tree added. A smaller 
learning rate may require more trees to converge to 
a robust model, enhancing the model’s ability to 
generalize but increasing computational complexity. 
This method is particularly useful for handling 
nonlinear datasets with complex interactions and 
dependencies among variables [34].

	– AdaBoost Regression (ABR) model:  The ABR-tuned 
model utilizes an AdaBoost regressor, a powerful 
meta-estimator. This method starts by fitting a base 
regressor on the initial dataset and subsequently 
fits additional copies of the regressor on the same 
dataset, adjusting the weights of instances based on 
the errors of current predictions. This iterative process 
enhances the model’s focus on difficult-to-predict 
instances. For this particular application, the ABR 
model underwent fine-tuning of its hyperparameters 
through Grid Search CV. The tuning optimized several 
key parameters: the base estimator was configured as 
a decision tree, the learning rate was set at 0.5, the 
loss function was designated as linear, and the model 
was built with 40 estimators. These adjustments 
were specifically tailored to enhance the predictive 
accuracy and efficiency of the model in handling 
complex regression tasks [35].

	– XGBoost Regression (XGBR)model: The XGBR, 
short for Extreme Gradient Boosting, is a high-
performance machine learning library that enhances 
the gradient-boosted decision tree algorithm through 
scalability and parallel processing. Known for its 
efficient implementation, XGBR significantly speeds 
up the training process of decision trees by utilizing 
parallel tree boosting  [36]. Under the scope of the 
current work, the XGBR model was meticulously 
optimized using Grid Search CV to fine-tune its 
hyperparameters for optimal performance on the 
specific dataset. The best parameters identified were 
as follows: the booster type was set to gradient boost 
tree; gamma was fine-tuned to 0.001; the importance 
type used was “gain”; no GPU was used (gpu_id=-1); 
the learning rate was adjusted to 0.1; the maximum 
depth of trees was limited to 2 to prevent over-fitting; 
the minimum child weight was set at 1; it used 500 
estimators; it was configured to run on a single thread 
(n_jobs=0); only one tree was computed in parallel 
(num_parallel_tree=1); the model’s randomness 
is controlled by random_state=0; regularization 
on the weights of features was minimal with reg_

alpha=0 and reg_lambda=1; the balance of positive 
and negative weights was neutral (scale_pos_
weight=1); all training data were used in each tree 
(subsample=1); the tree method was set to “exact” 
to find the best split; and parameter validation was 
enabled (validate_parameters=1).

	– The Ensemble Voting Regressor (VR) model: 
This model employs a robust technique known 
as ensemble learning, which enhances prediction 
accuracy by combining outputs from multiple 
machine learning models. A key strategy within this 
approach is the Voting Regressor,which operates by 
aggregating the predictions from several regression 
models, using either simple or weighted averaging. 
This method effectively capitalizes on the wisdom 
of the crowd, where the collective predictions are 
averaged to enhance the accuracy and stability of the 
final result[37]. 

Hence, for this work, the ensemble integrated the 
predictive capabilities of all the four specific models, 
i.e., MLR, GBR, ABR (tuned), and XGBR (tuned). The 
corresponding weights assigned to each model in the 
voting mechanism were carefully calibrated based on 
their predictive performance: 0.40 for the MLR model, 0.10 
for both the GBR and XGBR models, and 0.80 for the ABR 
model. This weighted averaging approach is expected to 
optimally balance the individual strengths of each model, 
leading to a superior collective prediction capability 
that outperforms any single model in the ensemble. This 
strategy is particularly effective in reducing variance 
and bias, thereby improving the robustness of predictive 
outcomes in complex datasets.

2.4  Criteria for Analyzing ML Model 
Performance

In the present study, six input parameters (namely, 
GGBS, AWA, AAS, NCA, RCA, WFS) and a single output 
parameter (i.e.,CS) are considered. The details of the 
mixes were given in quite detail and are clearly presented 
in Table 2. Furthermore, the processing action was 
carriedout. In the processing of the dataset, the initial 
step involves preprocessing, where the data were verified 
and cleansed by checking for and addressing any missing 
or null values. Following this, the data were transformed 
to ensure uniform scale across all input features; this was 
achieved by applying a Standard Scalar, which normalized 
the data and enhanced the model performances. Finally, 
to facilitate the application of machine learning models, 
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Figure 4: Model architecture flow diagram of the soft computing adopted in the current investigation.
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the dataset was strategically split into training and testing 
subsets. This segmentation allowed for the effective 
training of models on one portion of the data while 
validating model accuracy and generalizability on the 
other, ensuring stoutness and reliability of the predictive 
ML analysis.

In the validation of developed ML models designed 
to predict the CS, several key performance metrics are 
utilized to assess model accuracy and reliability. Root 
Mean Squared Error (i.e., RMSE) is employed to quantify 
the average magnitude of the prediction errors, providing 
a clear measure of the error variance, which is critical 
in evaluating the precision of the predictions. Another 
parameter, Mean Absolute Error (i.e., MAE) serves as 
another crucial metric, measuring the average magnitude 
of errors in predictions without considering their direction. 
This metric offers a straightforward representation of 
typical prediction errors, allowing to assess the average 
deviation from the actual values. Furthermore, Mean 
Squared Error (i.e., MSE) is used extensively to highlight 
the average of the squares of the errors. By squaring the 
errors before averaging, MSE gives a greater weight to 
larger errors, making it a vital tool for identifying models 
that may have occasional but significant deviations in 
prediction accuracy. Furthermore, the famousR2 Score, 
or the coefficient of determination, was considered to 
play a pivotal role by indicating the proportion of the 
variance in the dependent variable that is predictable 
from the independent variables in any developed 
statistical models. This score is helpful in determining the 
goodness of fit of the model, as a higher R2 value generally 
indicates a model that can explain a larger proportion of 
the variance, reflecting a more accurate representation of 
the real-world data. All the corresponding formulas are 
presented, respectively, under equations (i), (ii), (iii), and 
(iv) for RMSE, MSE, MAE, and R2 score. Where EVi and PVi 
are the measured (i.e., experimental) and predicted (i.e., 
test) values of the target variable (i.e., CS), respectively, 
n is the number of data, and EVmean and PVmean are the 
average ML model experimental CS value and output CS 
value, correspondingly[35].

(1)

(2)

(3)

(4)

Lastly, the coefficient of variation (i.e., CV) is another critical 
statistical metric used in the validation of developed 
ML models. CV represents the ratio of the standard 
deviation to the mean, expressed as a percentage. This 
metric is important for assessing the relative variability 
of the model predictions, irrespective of the units of 
measurement. Generally, a lower value of CV indicates a 
lesser degree of dispersion around the mean, signifying 
a model’s consistency in performance across different 
samples. In the field of compressive strength prediction, 
where consistency is as critical as accurateness, the CV 
value provides an essential measure of the reliability 
and stability of the developed ML models. Hence,the 
evaluation based on the CV value will ensure that the 
predictive ML models are totally accurate and consistently 
reliable in diverse conditions, which is fundamental for 
their realistic deployment in design and quality control 
of concrete mixtures [32,38]. The obtained results were 
meticulously verified to ensure that they fall within the 
accepted error margins. If deviations were observed, the 
values were calibrated, and steps of the methodology 
were repeated to achieve the desired accuracy. Figure 6 
clearly illustrates the flow of adopted methodology under 
in the present scope of the explorations.

3  Results and Discussion

3.1  Compressive Strength and Permeability 
Results of Pervious GPC mixes

This study’s exploration into pervious GPC mixes has 
demarcated a clear trend in the compressive strength(CS) 
and hydraulic conductivity (i.e., permeability) dependent 
on material proportions. The inclusion of up to 10% SBA 
as a replacement for the chief binder GGBS has led to 
an approximate 16% increase in compressive strength. 
This enhancement highlights the pozzolanic reactivity 
of SBA in the matrix. However, further increasing the 
SBA content beyond this threshold resulted in a decline 
in strength, suggesting an optimal threshold for SBA 
incorporation. Conversely, the substitution of NCA with 
C&D aggregates (RCA) markedly reduced compressive 
strength. At 100% replacement with RCA, the strength 
decreased by approximately 42%, underscoring the 
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significant impact of aggregate quality on the mechanical 
properties of concretes [39]. This reduction in strength 
with an increased RCA content is offset by enhanced 
permeability, indicating a trade-off between structural 
strength and permeability, which are the major hardened 
properties for pervious concretes and are central to this 
investigation. Other fresh and hardened properties are not 
reported in this study. It is clear from the results that the 
mixes with higher strength have low permeability due to 
fewer voids. Many researchers revealed that the permeable 
concrete composite mixes with lower permeability values 
lead to a higher strength [40,41]. This is evident from 
the results obtained in laboratory research. As the finer 
particles of aggregates fill the gaps between various-sized 
coarse aggregates, the permeable mixes become denser. 
This increase in fine aggregate content also increases 
the surface area of the aggregates and reduces the 
average pore diameter size. As a result, water ingress is 
reduced, providing greater resistance to the flow of water. 
This ultimately leads to a decrease in the coefficient of 
permeability value of the permeable composite mixes [42].

These phenomena are visually summarized in 
Figure 5, which depicts the inverse relationship between 
CS and permeability coefficient across the varied mix 

compositions. The standard deviation values in CS across 
the mixes suggest a reasonable consistency, with the 
observed variances reflecting material heterogeneity and 
the impacts of aggregate types on the mix performances. 
Furthermore, for all the CS results reported, the observed 
standard deviations of the individual sample results were 
within the tolerable variation confines of 15% prescribed 
as per the standard code of practice for concretes [43]. The 
quantified data on CS and permeability will serve as the 
foundation for developing ML models aimed at predicting 
the performance of these mixes. As the scope of this work 
is to develop ML models to study the effects on pervious 
GPCs, the obtained results are presented and discussed in 
the next section. 

3.2  Results on ML Modeling of Pervious 
Geopolymer Concretes

The diversity and breadth of training data are crucial for the 
robustness of ML models, particularly when developing 
predictive models for concrete compressive strength. A 
comprehensive dataset, representative of varied conditions 
in practical settings, is essential for this purpose [34]. In 

Figure 5: Average compressive strength and hydraulic conductivity of trial pervious GPC mixes.
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this study, which explores an under-researched area, data 
for 156 pervious GPC mix formulations were meticulously 
collected through controlled laboratory experiments. 
These mixes were air-cured under standard conditions, 
and the dataset compiled includes six input variables 
reflecting the mix components and one output variable, 
which is the compressive strength measured from 100 mm 
side cube specimens. The nomenclature and units of these 
variables are detailed in Table 2. 

3.2.1  Statistical Narrative and Correlation Exploration of 
the Input Data

The CS was ascertained using conventional standard 
testing methods. Table 3 provides a statistical 
breakdown of these variables, illustrating the distribution 
characteristics essential for effective ML modeling. These 
ML models are tailored to predict the performance of 
ordinary strength of pervious GPCs, which typically 
feature compressive strengths ranging from 15.0 MPa to 
39.8 MPa. These concretes utilize alkali-activated, GP 
binders and incorporate both NCA and RCA, with WFS 
serving as fine aggregate.

Figure 8 (a) complements this by showing the 
frequency distributions of the variables, confirming 
their suitability for regression analysis in ML which 
clearly portrays the relative frequency allocations [35] of 
personage input (GGBS, AWA, AAS, NCA, RCA, WFS) and 
output (CS) parameters. The corresponding correlation 
coefficient matrix is shown in Figure 8 (b). This “Pair 
Grid” methodology elucidates the correlations among 
various attributes, enhancing the understanding of 
inter-variable relationships essential for robust model 
development. This visualization facilitates an in-depth 
analysis by displaying the pair-wise relationships 
between all attributes, thus allowing for a comprehensive 

assessment of how each variable interacts within the 
dataset. The process of correlation analysis involves 
evaluating the degree of association between variables. 
Although various correlation coefficients exist, such as 
Spearman, Kendall, and Pearson, Pearson’s correlation 
coefficient (ρxy) is majorly recognized by the researchers. 
It quantifies the linear relationship between two variables 
by dividing the covariance of the variables (cov (X, Y)) by 
the product of their std. deviations (σX, σY), as expressed in 
Eq. (v). Here, x and y are the means of the variables X and 
Y, respectively.

(5)

The Pearson correlation coefficient (ρxy) has a value range 
from -1.0 to +1.0. Higher ρxy values suggest a well-built 
linear relationship impacting the output parameter. A 
coefficient of -01 indicates a contrary correlation, while the 
value”0” suggests that the variables may be uncorrelated 
or have a nonlinear relationships, as Pearson’s method 
only detects linear correlations. Thus, a zero value does 
not imply a lack of correlation but rather that there is no 
defined linear dependency between the variables Y and X.

As clearly portrayed in Figure 6 (a) and (b), the 
attribute representing the alkali activator solution is 
held constant across the dataset. Notably, NCA exhibits 
a strong positive correlation (0.80) with CS, indicative 
of their contributory role in enhancing mechanical 
robustness. Conversely, RCA manifests a prominent 
negative correlation (-0.79) with CS, suggesting a clear 
detrimental effect on structural integrity when used in 
higher proportions. 

These statistical relationships emphasize the material 
trade-offs, particularly in sustainable construction 

Table 3: Expressive statistics of the dependent and independent variables.

Variable Unit Count Mean std. dev Minimum 25% 50% 75% Maximum

GGBS kg 156 268.16 21.56 232.00 246.5 275.5 290.0 290.0

AWA kg 156 21.85 21.56 0.0 0.00 14.5 43.5 58.0

AAS kg 156 143.59 - 143.58 143.6 143.6 143.6 143.58

NCA kg 156 1230.18 601.67 0.00 935.8 940.7 1871.7 1881.3

RCA kg 156 610.13 569.48 0.00 0.00 881.9 886.5 1776.1

FA (WFS) kg 156 199.14 0.5321 198.30 198.6 199.3 199.7 199.7

CS MPa 156 27.73 5.544 14.96 24.37 27.79 31.2 39.81
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paradigms where the use of recycled materials must be 
balanced against strength performance imperatives. 
Hence, this approach was considered critical for effectively 
identifying potential influences and dependencies that 
could affect the predictive accuracy of the ML models 
employed in this study [44]. 

Also, from the mix design Table 2, it is clear to 
note that the input parameters exhibit variations in 
scale. To mitigate the dominance effect arising from 
these magnitude differences among input parameters, 

Table 4: Input Data after Feature Standardization.

GGB S AWA AAS NCA RCA FA

1.02 -1.02 - 0.29 -0.28 1.06

0.32 -0.32 - -0.51 0.51 0.28

-1.76 1.76 - 1.06 -1.07 -1.66

-0.37 0.37 - 1.07 -1.07 -0.49

-0.372 0.37 - -0.51 0.51 -0.49

Figure 6: (a) Corelation matrix showing the affiliation of individual parameters with the other parameters.
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it is necessary to implement normalization. This data 
preparation technique standardizes the values within the 
dataset to a common scale, enhancing the efficiency of the 
learning algorithms and facilitating quicker convergence. 
Hence, the Feature standardization is pivotal in ML 
modeling as it equalizes the significance of all features 
by transforming their values to a uniform range. This 
standardization ensures that the model attributes equal 
importance to each feature during the learning phase, 
promoting a more balanced and effective analysis. As the 
methodology employed is well-documented in existing 
literature [37,38], thus providing the additional detail 
may result in redundancy of fundamental concepts. This 
task is achieved by applying the maximum-minimum 
normalization technique, which renovates the data using 
the equation specified under eq. (vi). 

(6)

In this formula, Xn denotes the feature normalized data, 
with Xmin representing the smallest and Xmaxthe largest 
values of the inputs. X corresponds to the individual 
original data before normalization. This technique 
benefits the model development process by expediting 
calculations and enhancing the accuracy and robustness 
of the predictive model. Table 4 displays the normalized 
data for the input parameters following feature 
standardization, presenting the transformed values that 
ensure comparability across the ML study’s variables. 

3.2.2  Comparative Exploration of Developed Soft 
Computing ML Models

Figure 7 portrays a series of scatter plots comparing 
the actual experimental results of CS for pervious GPC 
against the values predicted by various ML models. These 
plots serve as a illustrative assessment of the models’ 
performance, showing the degree to which the predicted 
values align with the actual experimental outcomes. In 

Figure 6: (b) Pearson’s correlation coefficients between the parameters.
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each plot, the dashed sloping line represents the line of 
ideal prediction, where the predicted values precisely 
match the actual CS values. Hence, the proximity of data 
points to this line is indicative of the ML model’s predictive 
accuracy. 

The MLR model shows a respectable congruence with 
the true values, denoting a solid base model performance. 
However, there appear to be deviations, especially as 
the CS values increase, suggesting linear regression’s 
limitations in capturing complex nonlinear relationships. 
The scatter plot for Tuned XGBR demonstrates a better 
alignment with the line of perfect prediction, implying 
that the tuning process has refined the model to 
better encapsulate the complexities of the data. The 
GBR, another ensemble method, similarly displays a 
commendable predictive performance. The ABR results 
indicate a slight improvement over the GBR, which 
could be due to the adaptive learning process it utilizes, 
placing more emphasis on the instances that previous 
models misjudged. Finally, the ensembleVR model– 
which aggregates predictions from the aforementioned 
models – exhibits a high degree of accuracy, as seen 
by the concentration of data points around the line of 
perfect prediction. This ensemble approach evidently 
synergizes the CS of individual models, thereby improving 
the sturdiness and reducing the potential for overfitting. 
Overall, while each model has merits, the VR emerged 
as the most promising, encapsulating the predictive 
power of other models while mitigating their respective 
weaknesses. 

Furthermore, every model’s performance metrics 
(such as RMSE, MAE, and R² score) would quantitatively 
complement these visual insights. Lower RMSE and MAE 
values, alongside a R² score close to 1, would support 

the visual elucidations of the models’ effectiveness in 
predicting the strength values.

The key ML model statistical parameters obtained 
after scrutinizing the efficacy of various ML models 
applied to predict the CS of pervious GPC are presented 
in Table 5. Each model’s performance was meticulously 
tuned to achieve optimal accuracy, and the results are 
collectively presented.

The results of MLR revealed a significant predictive 
capability with an R² score of 0.83, suggesting that the 
model could explain 83% of the variance in predicted 
strength. However, a negative CVmean of -0.14 hints 
at potential over fitting issues, which might affect the 
model’s performance on unseen data. The XGBoost Tuned, 
similarly, displayed robustness with an identical R² score 
of 0.88. Its performance metrics, including RMSE, MAE, 
and MSE, matched those of the MLR, underscoring its 
consistency. However, the more negative CVmean of -0.74 
raises concerns about the model’s stability and reliability 
across different validation folds. The tunedABR emerged 
slightly superior among the individual models, achieving 
the highest R² score of 0.86. This model demonstrated the 
lowest RMSE and MSE, indicating its greater accuracy and 
consistency in predicting the strength of pervious GPC. 
The least negative CVmean of -0.91, although improved 
still suggests room for enhancing model generalization. 
The GBR tracked closely with the XGBR and MLR models, 
mirroring their statistical scores but with a slightly 
less negative CVmean of -0.79. This reflects a balanced 
performance but with room for improvement in model 
training and validation phases. Finally, the VR, an 
ensemble of all the aforementioned models, outstripped 
the individual predictors by integrating their strengths. 
This model achieved the most favorable outcomes, with 

Figure 7: Actual vs predicted compressive strength results from ML models.
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the highest accuracy (R² score of 0.90) and the lowest 
error rates (RMSE of 1.52 and MSE of 2.32). Its CVmean 
of -0.11 is substantially less negative, indicating a robust 
model with consistent performance across different test 
scenarios. The comprehensive evaluation emphasizes the 
effectiveness of ensemble methods, particularly the VR, 
in refining the prediction accuracy for the CS of pervious 
GPC. The notable performance of AdaBoost Tuned justified 
its significant weightage in the ensemble configuration, 
enhancing the overall model efficacy. It can be witnessed 
that the error among the predicted and measured strength 
value is minimal.

Figure 8 indicates the major metrics (i.e., RMSE and 
R2 values) for ML models for both the training and test 
datasets, which are considered decisive for understanding 
model efficacy. In examining the MLR model, we find RMSE 
values of 1.64 and 1.72 for the training and test datasets, 
respectively, with R2values of 0.82 and 0.83. While linear 
regression provides a reasonable baseline for prediction, 
the RMSE indicates a moderate discrepancy between 
the predicted and actual values, and the R² shows that a 
substantial portion, but not all, of the variance is captured 

by the model. The GBR improves upon MLR with a lower 
RMSE of 1.63 and 1.65 and higher R2 values of 0.89 and 
0.91 for the training and test datasets, respectively. These 
values suggest that this model more accurately predicts CS 
and accounts for a greater degree of variance, likely due to 
its ability to minimize errors sequentially through multiple 
decision trees. The ABR, which adapts by focusing on 
instances that previous iterations mispredicted, shows an 
RMSE of 1.59 for training data and 1.61 for testing, with R² 
values of 0.89 and 0.86. 

These statistics indicate a strong model fit in training, 
although with a slight reduction in the test phase, hinting 
at potential overfitting issues or the need for further 
parameter tuning. XGBR, an optimized gradient boosting 
library, shows an RMSE of 1.64 in training and 1.79 in 
testing, with R2 of 0.88 and 0.88. The increase in RMSE for 
the test data suggests that this model may not generalize 
as well as others, although the consistent R² indicates a 
stable prediction of variance across both datasets. Finally, 
the VR model, an ensemble of the aforementioned models, 
registers the lowest RMSE of 1.52 and 1.59 for the training 
and test datasets, respectively, and an R2 of 0.88 and 0.90. 

Table 5: Results on Machine Learning Models Applied on Input Data with the Performance Metrics

Statistical Parameters of 
ML Models

Multiple Linear 
Regression

XGBoost Tuned AdaBoost 
Tuned

Gradient Boost 
Regressor

Voting Regressor

RMSE 1.64 1.63 1.59 1.64 1.52

MAE 1.28 1.30 1.26 1.30 1.21

MSE 2.70 2.70 2.51 2.70 2.32

R2 Value 0.83 0.91 0.86 0.88 0.90

CVmean -0.14 -0.74 -0.91 -0.79 -0.11

      

Figure 8: Results of RMSE and R2 values of developed ML models.
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The VR’s performance indicates that it effectively combines 
the strengths of the individual models, balancing out 
their weaknesses and thereby providing more reliable 
predictions. The consistent improvement in RMSE and R² 
across both datasets underscores the robustness of the 
ensemble approach[45].

In order to critically evaluate these models, we must 
consider both RMSE and R² in tandem. RMSE offers a clear 
indication of the average magnitude of the model’s errors, 
with lower values signifying more accurate predictions. 
R² provides insight into the proportion of the variance 
for the dependent variable that’s captured by the model. 
Together, these metrics illustrate the models’ predictive 
accuracy and their ability to generalize to novel, 
concealed data. Overall, while each model has its merits, 
the VR model emerged as the most effective, leveraging 
the collective power of multiple algorithms to enhance 
predictive accuracy. The analysis reveals that the choice 

of model can significantly influence the performance and 
reliability of CS predictions for pervious GPCs. 

3.2.3  Comparative Analysis of Predictive Accuracy and 
Feature Influence in ML Models 

The juxtaposition of figures under Figure 9(a) and Figure 
9(b) shows the predictive efficacy and influence of the 
input parameters of various ML models on the CS value. 
The X-axis in Figure 9 (a), denoting the sample number, 
provides a sequential view of the model’s performance over 
the testing dataset. The Y-axis represents the error values, 
reflecting the model’s precision across each sample point. 
The closeness of the predicted values (depicted by the blue 
line) to the actual values (represented by the dashed red 
line) signifies a low error margin, reinforcing the model’s 
robust predictive capabilities under every ML models.

Figure 9: (a)  Results showing the errors in predicted vs actual values of compressive strength from the testing dataset.
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Comparatively, the VR model demonstrates much 
closer alignment between predicted and actual values, 
suggesting an enhanced predictive performance. This result 
is attributable to the weighted aggregation of predictions 
from multiple models, which mitigates individual model 
biases and leverages collective intelligence. Occasional 
peaks and troughs suggest that while certain samples may 
pose a greater challenge in prediction, the model’s overall 
performance remains unfalteringly high. Over fine-tuning, 
the VR model’s accuracy and reliability, as visually 
depicted in this plot, mark a promising advancement in 
the domain of soft computing applications within material 

science, showcasing a method that could be pivotal in 
future engineering innovations.

Conversely, Figure 9 (b) highlights the feature 
coefficient scores, revealing the varying degrees of 
influence that input variables exert on CS. However, the 
ensemble VR model’s feature coefficient scores are not 
showcased here due to its methodology of amalgamating 
outputs from various other ML models.

For instance, NCA and RCA appear to have 
substantial impacts, as demonstrated in their coefficient 
magnitudes across models. The discrepancy between the 
influence of NCA and RCA underscores the complexity 

Figure 9: (b)  Results showing the feature score of the ML models for compressive strength.
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of incorporating varying aggregate types and the 
nuanced effects on concrete properties. Hence, through 
the integration of the insights from both figures, itis 
apparent that while individual ML models offer valuable 
predictions, the ensemble approach in VR provides a 
more robust and accurate predictive performance. This 
consolidates the premise that in the realm of complex 
material interactions in GPC formulations, ensemble ML 
models are paramount in harnessing the predictive power 
of soft computing techniques. The disparity between the 
coefficients of features across models further corroborates 
the necessity of considering multiple models to capture 
the heterogeneity of influential factors on the compressive 
strength of the composite under consideration. Overall, 
these analyses clearly prove that while individual factors 
can significantly impact the CS, the integration of 
multiple ML models into an ensemble framework like VR 
can significantly enhance the accuracy and reliability of 
predictions for pervious GPCs.

Figure 10 presents a density plot juxtaposing the actual 
and predicted values of concrete CS derived from the best-
performing tuned ensemble VR model. The congruence 
of the density curves signifies that the predictions closely 
align with the actual data [38], confirming the VR model’s 
capacity to capture the variance in the dataset effectively. 
The proximity of the peaks for both actual and predicted 
values stresses the VR’s proficiency in central tendency 
prediction. 

Moreover, the model’s robustness is evident from 
the distribution spread, where both predicted and real 
values exhibit similar variance, reinforcing the model’s 
credibility. The similarity in the tail lengths of both 
distributions further illustrates that extreme values, 

whether high or low, are accurately anticipated by this ML 
model [35]. Hence, the VR model’s capacity to generalize 
well, indicated by the high degree of similarity between 
the density plots of predicted and actual values, lays the 
groundwork for its application in optimizing the mix 
design for improved pervious GPC performances, thus 
opening avenues for future developments in material 
technology and computational modeling in this field.

Hence, this investigation exemplifies how 
integrating multiple ML techniques can substantially 
benefit predictive modeling in sustainable construction 
engineering contexts, offering a vigorous tool for designing 
better-performing geopolymer concretes for sustainable 
future. These encapsulated findings effectively provide 
a compelling narrative on the application of advanced 
ML methodology to improve the understanding and 
prediction of material properties in civil engineering 
research. Overall, the developed ML models effectively 
persuade all the indispensable conditions for all the 
dependent variables, which clearly shows that the 
developed ML models are proficient enough to predict 
the most-important strength of the pervious geopolymer 
concrete mixes. 

4  Conclusions and Scopes for 
Future Research
This study presented a comprehensive investigation 
into the performance of pervious GPC hybridized with 
agro-industrial wastes (GGBS, SBA, and WFS) and C&D 
wastes, employing advanced soft computing techniques 
for CS prediction. The experimentation involved creating 
13 distinct GPC mixes with varying percentages of 
SBA and RCA content and analyzing their effects on 
the 28-day strength and hydraulic conductivity. These 
properties were considered to be vital as they directly 
relate to the structural integrity and functionality of 
pervious concretes. The experimental results elucidated 
a significant enhancement in compressive strength with 
up to 10% inclusion of SBA, after which the strength 
gradually decreased. This finding highlights the optimal 
use of SBA in enhancing the geopolymer matrix’s strength 
due to its pozzolanic activity up to a certain dosages. 
Conversely, increasing the proportion of RCA negatively 
impacted the compressive strength due to the poorer 
quality of C&D aggregates compared to fresh crushed 
granite. However, the increased RCA content improved 
the hydraulic conductivity, indicating a beneficial aspect 
for permeable concrete applications obliging higher 

Figure 10: Results of predicted values and actual values from the 
ensemble Voting Regressor ML model.
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permeability. Furthermore, the application of multiple 
linear regression, gradient boost, AdaBoost, XGBoost 
regressions, and an ensemble model using a Voting 
Regressor effectively modeled the compressive strength 
of GPC. Among these, the AdaBoost Tuned model and 
the ensemble approach emerged as superior, providing 
robust predictions with lower error rates, demonstrating 
the effectiveness of combining multiple predictive models 
to enhance prediction accuracy. The present investigation 
effectively confirms that the leveraging advancements 
in soft computing models can significantly contribute to 
the sustainable development of construction materials, 
aligning with global sustainability goals by reducing 
industrial waste and enhancing material properties.

Future researchers on the topic may have the 
possibility to explore further the balance between 
mechanical properties and environmental benefits in GPC 
by integrating other types of industrial and agricultural 
waste products such as copper slag, rice husk ash, and 
fly-ash. There is also an opportunity to refine the ML 
models by incorporating more comprehensive datasets 
that include additional environmental and operational 
variables affecting composite performances. Furthermore, 
long-term durability studies under various environmental 
conditions could provide deeper insights into the 
practical applications and limitations of these materials. 
Also, expanding the scope to include fresh concrete 
properties and other mechanical parameters could offer a 
more holistic view of the material characteristics. Further 
studies could also focus on scaling up the production 
process and evaluating the economic viability of pervious 
GPC in commercial applications.
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Appendix: Dataset used for the investigation
Unit = kg per cubic meter Unit = MPa

Mix ID GGBS AWA AAS NCA RCA FA CS

M-0-0 290 0 143.58 1881.3 0 199.7 32.2

M-0-0 290 0 143.58 1881.3 0 199.7 31.0

M-0-0 290 0 143.58 1881.3 0 199.7 31.6

M-0-0 290 0 143.58 1881.3 0 199.7 32.9

M-0-0 290 0 143.58 1881.3 0 199.7 31.2

M-0-0 290 0 143.58 1881.3 0 199.7 30.4

M-0-0 290 0 143.58 1881.3 0 199.7 34.2

M-0-0 290 0 143.58 1881.3 0 199.7 31.1

M-0-0 290 0 143.58 1881.3 0 199.7 29.9

M-0-0 290 0 143.58 1881.3 0 199.7 34.0

M-0-0 290 0 143.58 1881.3 0 199.7 32.8

M-0-0 290 0 143.58 1881.3 0 199.7 31.0

M-0-25 290 0 143.58 1411.03 444.01 199.7 32.7

M-0-25 290 0 143.58 1411.03 444.01 199.7 27.5

M-0-25 290 0 143.58 1411.03 444.01 199.7 30.3

M-0-25 290 0 143.58 1411.03 444.01 199.7 31.9

M-0-25 290 0 143.58 1411.03 444.01 199.7 32.8

M-0-25 290 0 143.58 1411.03 444.01 199.7 31.2

M-0-25 290 0 143.58 1411.03 444.01 199.7 27.5

M-0-25 290 0 143.58 1411.03 444.01 199.7 27.4

M-0-25 290 0 143.58 1411.03 444.01 199.7 30.0

M-0-25 290 0 143.58 1411.03 444.01 199.7 30.5

M-0-25 290 0 143.58 1411.03 444.01 199.7 28.1

M-0-25 290 0 143.58 1411.03 444.01 199.7 30.6

M-0-50 290 0 143.58 940.68 888.03 199.7 22.6

M-0-50 290 0 143.58 940.68 888.03 199.7 25.8

M-0-50 290 0 143.58 940.68 888.03 199.7 26.2

M-0-50 290 0 143.58 940.68 888.03 199.7 28.0

M-0-50 290 0 143.58 940.68 888.03 199.7 24.4

M-0-50 290 0 143.58 940.68 888.03 199.7 28.7

M-0-50 290 0 143.58 940.68 888.03 199.7 24.9

M-0-50 290 0 143.58 940.68 888.03 199.7 25.0

M-0-50 290 0 143.58 940.68 888.03 199.7 26.8

M-0-50 290 0 143.58 940.68 888.03 199.7 27.9

M-0-50 290 0 143.58 940.68 888.03 199.7 24.3

M-0-50 290 0 143.58 940.68 888.03 199.7 23.2
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Unit = kg per cubic meter Unit = MPa

Mix ID GGBS AWA AAS NCA RCA FA CS

M-0-75 290 0 143.58 470.34 1332.05 199.7 23.8

M-0-75 290 0 143.58 470.34 1332.05 199.7 23.2

M-0-75 290 0 143.58 470.34 1332.05 199.7 21.8

M-0-75 290 0 143.58 470.34 1332.05 199.7 22.8

M-0-75 290 0 143.58 470.34 1332.05 199.7 22.1

M-0-75 290 0 143.58 470.34 1332.05 199.7 22.5

M-0-75 290 0 143.58 470.34 1332.05 199.7 20.5

M-0-75 290 0 143.58 470.34 1332.05 199.7 23.2

M-0-75 290 0 143.58 470.34 1332.05 199.7 21.1

M-0-75 290 0 143.58 470.34 1332.05 199.7 20.8

M-0-75 290 0 143.58 470.34 1332.05 199.7 23.0

M-0-75 290 0 143.58 470.34 1332.05 199.7 21.4

M-0-100 290 0 143.58 0 1776.07 199.7 19.5

M-0-100 290 0 143.58 0 1776.07 199.7 18.6

M-0-100 290 0 143.58 0 1776.07 199.7 18.9

M-0-100 290 0 143.58 0 1776.07 199.7 18.3

M-0-100 290 0 143.58 0 1776.07 199.7 17.5

M-0-100 290 0 143.58 0 1776.07 199.7 16.2

M-0-100 290 0 143.58 0 1776.07 199.7 16.6

M-0-100 290 0 143.58 0 1776.07 199.7 15.0

M-0-100 290 0 143.58 0 1776.07 199.7 19.1

M-0-100 290 0 143.58 0 1776.07 199.7 20.0

M-0-100 290 0 143.58 0 1776.07 199.7 18.4

M-0-100 290 0 143.58 0 1776.07 199.7 18.0

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 32.0

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.2

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 31.1

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.0

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 35.8

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.1

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 33.2

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 39.0

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 34.0

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 35.8

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 35.3

M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.1

M-10-0 261 29 143.58 1874.89 0 198.9 36.2
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Unit = kg per cubic meter Unit = MPa

Mix ID GGBS AWA AAS NCA RCA FA CS

M-10-0 261 29 143.58 1874.89 0 198.9 37.5

M-10-0 261 29 143.58 1874.89 0 198.9 35.4

M-10-0 261 29 143.58 1874.89 0 198.9 38.0

M-10-0 261 29 143.58 1874.89 0 198.9 37.4

M-10-0 261 29 143.58 1874.89 0 198.9 34.0

M-10-0 261 29 143.58 1874.89 0 198.9 32.8

M-10-0 261 29 143.58 1874.89 0 198.9 39.6

M-10-0 261 29 143.58 1874.89 0 198.9 38.9

M-10-0 261 29 143.58 1874.89 0 198.9 37.0

M-10-0 261 29 143.58 1874.89 0 198.9 38.4

M-10-0 261 29 143.58 1874.89 0 198.9 39.8

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 30.8

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 33.0

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 29.5

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 31.0

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 31.0

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 30.9

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 26.4

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 31.8

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 30.9

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 29.8

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 29.8

M-15-0 246.5 43.5 143.58 1871.65 0 198.6 27.3

M-20-0 232 58 143.58 1868.42 0 198.3 26.1

M-20-0 232 58 143.58 1868.42 0 198.3 28.9

M-20-0 232 58 143.58 1868.42 0 198.3 28.6

M-20-0 232 58 143.58 1868.42 0 198.3 24.4

M-20-0 232 58 143.58 1868.42 0 198.3 27.9

M-20-0 232 58 143.58 1868.42 0 198.3 28.9

M-20-0 232 58 143.58 1868.42 0 198.3 26.4

M-20-0 232 58 143.58 1868.42 0 198.3 30.7

M-20-0 232 58 143.58 1868.42 0 198.3 24.8

M-20-0 232 58 143.58 1868.42 0 198.3 22.8

M-20-0 232 58 143.58 1868.42 0 198.3 27.6

M-20-0 232 58 143.58 1868.42 0 198.3 25.0

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.5

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 24.4
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Unit = kg per cubic meter Unit = MPa

Mix ID GGBS AWA AAS NCA RCA FA CS

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.4

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.9

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 27.2

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 28.9

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 28.6

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.8

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.1

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 27.3

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.9

M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 27.7

M-10-50 261 29 143.58 937.45 884.98 198.9 29.3

M-10-50 261 29 143.58 937.45 884.98 198.9 30.4

M-10-50 261 29 143.58 937.45 884.98 198.9 29.1

M-10-50 261 29 143.58 937.45 884.98 198.9 31.4

M-10-50 261 29 143.58 937.45 884.98 198.9 30.8

M-10-50 261 29 143.58 937.45 884.98 198.9 29.5

M-10-50 261 29 143.58 937.45 884.98 198.9 31.4

M-10-50 261 29 143.58 937.45 884.98 198.9 31.2

M-10-50 261 29 143.58 937.45 884.98 198.9 28.3

M-10-50 261 29 143.58 937.45 884.98 198.9 29.6

M-10-50 261 29 143.58 937.45 884.98 198.9 30.2

M-10-50 261 29 143.58 937.45 884.98 198.9 30.2

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.9

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.7

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.9

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.8

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.9

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.3

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.3

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.9

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.3

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.0

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 26.2

M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.0

M-20-50 232 58 143.58 934.21 881.92 198.3 20.7

M-20-50 232 58 143.58 934.21 881.92 198.3 19.9

M-20-50 232 58 143.58 934.21 881.92 198.3 19.7
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Unit = kg per cubic meter Unit = MPa

Mix ID GGBS AWA AAS NCA RCA FA CS

M-20-50 232 58 143.58 934.21 881.92 198.3 20.5

M-20-50 232 58 143.58 934.21 881.92 198.3 19.9

M-20-50 232 58 143.58 934.21 881.92 198.3 19.7

M-20-50 232 58 143.58 934.21 881.92 198.3 20.4

M-20-50 232 58 143.58 934.21 881.92 198.3 19.8

M-20-50 232 58 143.58 934.21 881.92 198.3 20.0

M-20-50 232 58 143.58 934.21 881.92 198.3 20.4


