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Abstract: The paper presents the temperature field 
effect on the dynamic stability problem of plates with 
imperfection. The main objective is to conduct numerical 
investigations which show the relations between the 
imperfection ratio and plate dynamic response in a thermal 
environment. The plate is composed of three layers: 
thin facings and a thicker core. The plate can be loaded 
mechanically and thermally or only thermally. The facings 
are mechanically compressed with the forces acting in a 
plane. The temperature field model is defined by the 
temperature difference, which occurs between the plate 
edges. Two plate models are examined as follows: built 
using the approximation methods – orthogonalization 
and finite differences – and composed of finite elements. 
The analytical and numerical solution procedure is the 
main one, which is the proposal to perform the problem 
analysis. The plate reaction is described by the obtained 
values of the critical temperature differences for plates 
loaded only thermally and by the critical mechanical loads 
and the corresponding temperature differences for plates 
loaded mechanically and subjected to the uncoupled 
temperature field. The effect of the plate imperfection 
ratio under time-dependent loads is shown by numerous 
observations and results, which are shown graphically. 
The importance of the imperfection ratio on the plate’s 
dynamic stability response in complex loading conditions 
is studied.

Keywords: three-layered annular plate; dynamic 
stability; imperfection; thermal loading; finite difference 
method; finite element method.

1  Introduction
The effect of the dynamic response of the composite 
plate depends on various parameters. These include 
the imperfection ratios whose values determine the 
predeflection shape of the plate. A plate subjected 
to mechanical and thermal loads increasing in time 
formulates a time-dependent complex problem, whose 
results are strongly related to the plate geometrical 
parameters. The annular and circular composite plates, 
which can be used in different kinds of industries, such 
as mechanical, civil engineering, and aerospace, can be 
subjected to the complex work conditions. This is the 
reason that the thermomechanical evaluation of plate 
sensitivity is still a current issue addressed in numerous 
works. Few works strictly focus on the issue of the 
imperfection of composite annular plates. Selected papers 
concerning the issue of buckling of mechanically or/and 
thermally loaded plates where the plate geometry has 
been taken into account are presented in the literature 
review. 

The general solution and dynamic behavior of 
sandwich annular and circular plates are presented 
in works [1] and [2]. The thermal buckling effect of 
moderately thick functionally graded material (FGM) 
annular plate is presented in paper [3]. The thermoelastic 
problem showing the reactions of the imperfect, radially 
graded annular plate with a heated edge is presented 
in work [4]. The effect of temperature on the buckling 
behavior of the annular plate is presented in papers 
[5–7]. The elements of the critical state, like critical 
temperature and the corresponding modes, are examined 
for different materials and geometrical plate parameters. 
The FGM annular plates with imperfections are presented 
in paper [8]. Both buckling and dynamic postbuckling 
reactions are the main problems of consideration. The 
thermomechanical buckling of perforated, functionally 
graded annular sector plates under uniform temperature 
rises and radial, circumferential, or biaxial mechanical 
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loads is investigated in work [9]. The final results 
present the effect of the sector geometry, direction of the 
mechanical loads, and the combination of the thermal 
and mechanical loads on the buckling loads and mode 
shapes. The viscoelastic FGM annular plates with different 
geometrical, material, and load parameters are presented 
in work [10]. The paper presents the unified dynamic 
analysis method for a viscoelastic FGM annular plate.

The novelties presented in this paper concern the 
numerical investigations which are focused on the 
evaluation of the reactions of the composite plate to 
the action of the temperature field or the participation 
of the temperature field in complex thermomechanical 
loading. The imperfection of the shape geometry of the 
plate’s initial surface is the main analyzed element, which 
changes the dynamic response of the plate. The effect of 
various geometrical imperfect forms of the plate surface 
predeflection has been examined: waved circumferential 
predeflection, which corresponds to the plate buckling 
mode, complex initial shape, which is composed 
of rotational axisymmetrical predeflection, and the 
circumferential waved form for positive or mixed positive 
and negative numbers, which calibrate the grade of plate 
predeflection. The participation of various imperfections 
of the plate surface, which initiate the dynamic buckling 
phenomenon, complements the existing analyses and 
significantly enriches the cognition of the examined 
layered structure of the plate showing its resistance 
to the shape imperfections. The presented exemplary 
results of the numerous numerical analyses create both a 
practically important and scientifically interesting image 
of the buckling sensitivity of the structures to existing 
imperfections. Some numerical results are presented 
in work [11]. The additional and wider observations, 
numerical calculations, and results shown in the figures 
and the tables presented in this work make recognition of 
the formulated problem richer. To the best of the author’s 
knowledge, the so-formulated thermomechanical problem 
and the idea to observe the plate buckling sensitivity on 
variously defined imperfections have not been sufficiently 
considered. 

The method of the analytical and numerical 
solution to the problem as proposed in this paper refers 
to the solution of mechanically loaded annular plate 
presented in works [12], [13], [14]. The imperfection issue 
is analyzed in work [14] and particularly in work [15] for 
plates that are only loaded mechanically. Thermal and 
thermomechanical problems are examined for a layered, 
composite plate in work [16], [17]. The observations for a 
composite three-layered plate with a core layer made of 
viscoelastic material are presented in [18]. 

2  Problem Formulation 
The three-layered annular plate composed of thin 
steel facings and a thicker foam core is the object of 
consideration. The plate cross section is symmetric. The 
analyzed forms of plate buckling can be axisymmetrical 
or asymmetrical. The plate is subjected to a complex 
thermomechanical state of loading. It is mechanically 
loaded by the compressing forces linearly increasing in 
time, which are uniformly distributed on the outer facings. 
The temperature field surrounds the plate’s inner and 
outer perimeters. The temperature difference between the 
inner and outer plate edges creates the thermal gradient. 
The temperature difference can be fixed, constant in time, 
or it can change, dynamically increasing in time. Three 
models of loading, showing the temperature field effect 
on the dynamic plate reaction, are acceptable: thermal 
loading with the temperature difference between the plate 
edges increasing in time, both mechanical and thermal 
loading with mechanical and thermal loads increasing 
in time, and mechanical loading increasing in time, 
which is connected to the constant in time action of the 
temperature field. It should be emphasized that thermal 
loading is defined by the uncoupled temperature field, 
whose parameters are arbitrarily assumed.

The equations (1) and (2) express the thermomechanical 
loading quickly increasing in time:

                                 𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                     (1 
 
 
 

(1)

                                ∆𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠                                     (2) 
 
 

(2)

where p is the mechanical stress, s the rate of the 
mechanical loading growth, DT the temperature difference 
between plate edges, a the rate of the temperature loading 
growth, and t is the time.

The plate is loaded mechanically with the compressive 
forces uniformly distributed on the outer perimeter of 
the facings. The action of the outer forces on the lateral 
surfaces of both plate facings determines the compressive 
mechanical stress p. The plate model is presented in Figure 
1. The plate is located in a temperature field with different 
values of temperatures Ti and To in the plate’s inner 
hole and area of the outer perimeter, respectively. Both 
plate edges are slidably clamped. Two cases of thermal 
gradients are considered: positive where temperature Ti in 
the plate’s hole is higher than in the outer surroundings 
(Ti > To) and negative where the temperature values are 
opposite (Ti < To). 

The main assumptions which are adopted to describe 
the thermal environment are as follows:
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 – axisymmetric and flat temperature field,
 – the lack of heat exchange between the plate surfaces,
 – the heat flow is only in a radial direction of the plate 

facings (see Eq. (3)), and
 – the material parameters are fixed and do not depend 

on temperature changes.

To express the parameters of the dynamic critical state 
of the plate, the criterion of the loss of plate stability was 
assumed. According to the criterion presented by Wolmir 
[19], the plate loses its stability at the moment when the 
first maximum value of deflection velocity is observed for 
the point with the maximum deflection.

3  Problem Solution
The main method of solution is based on an analytical 
and numerical analysis which uses the following 
approximation methods: orthogonalization and finite 
difference (the Finite Difference Model – FDM plate 
). The influence of various ratios of imperfections on 
plate stability response is expressed by the elements 
of assumed equation (9), which determine the shapes 
of plate predeflection. Equation (9) is composed of two 
terms: axisymmetrical and a term dependent on the 
number of circumferential waves. Assumed calibrating 
numbers change the participation of the mentioned two 
terms and make it possible to produce various forms of 
plate predeflection. The solution procedure is presented 
in the works [12,13,14,17] in detail. 

Additionally, the finite element method has been 
used to evaluate selected examples of the plates being 
examined (the Finite Element Method - FEM plate). The 
ABAQUS system was used to conduct the calculations.

3.1  Solution Procedure Using the Finite 
Difference Method

The main elements of the solution procedure are as 
follows: formulation of the system of the dynamic 

equilibrium equations of each plate layer, description of 
the transversally symmetrical deformation of the three-
layered structure, formulation of the equations for angles 
describing the broken line in the plate cross section for 
the core layer in radial and circumferential directions, 
usage of the linear physical relation in the plate facings 
and the core, formulation of the sectional forces and 
moments in facings including the thermal elements, and 
determination of the resultant membrane forces including 
the assumed stress function.  

The temperature distribution in the radial direction of 
the plate facings is expressed by the logarithmic equation 
[20]

                               ln
ln

−
= + i o

N o
i

T TT T ρ
ρ

                                 (3) (3)

where Ti and To are the temperatures of the inner and 
outer plate perimeters, respectively (see Fig. 1), =

o

r
r

ρ  the 
dimensionless plate radius, = i

i
o

r
r

ρ  the dimensionless 
inner plate radius, and ro is the outer plate radius.

The basic equation describing the plate deflections in 
the dynamic problem takes the following form:
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where wd is the additional plate deflection, k1 = 2D, k2 = 4Drθ 
+ νk1; ( )

3

212 1
EhD =

−ν  is the plate rigidity; 3

12r
GhD =θ  is flexural 

rigidity of the facings; E and n are the Young’s modulus 
and Poisson’s ratio of the facing material, respectively; h 
is the total plate thickness; d and g are the differences of 
radial and circumferential displacements of the points, 
respectively, in the middle surfaces of the facings d = u3 

- u1, g = v3 - v1; H’ = h’ + h2; Φ is the stress function; w is 
the plate total deflection; M = 2h΄m + h2m2; m and m2 are 
the facing and core mass density, respectively; h΄ is the 
facings’ thickness and h2 is the core thickness.

Equation (4) has been obtained after adding the 
summands of the dynamic equilibrium equations of forces 
in the transversal plate direction, which have been derived 
for each plate layer: the facings and the core. Then, the 
relations for the resultant radial and circumferential 
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Figure 1: Scheme of thermomechanical loading of a three-layered 
annular plate built of outer layers 1 and 3 and middle layer 2.
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forces and the resultant membrane forces expressed by 
the introduced stress function Φ have been inserted. 

The boundary conditions for the plate slidably 
clamped on both edges are as follows:

          0r r ( r )i o
w = = , 0' r r r ( r )i o

w = = , 0r r ( r )i o
δ γ == = , 0' r r r ( r )i o

δ = =               (5) 

 
 

(5)

The initial and loading conditions are as follows:

wd|t=0 = 0, wd,t|t=0 = 0 (6)

The conditions associated with the mechanically loaded 
plate edges are the following:                           wd|t=0 = 0, wd,t|t=0 = 0                                 (6) 

 
                 ( ) 1r r ri

σ p t d= = − , ( ) 2r r ro
σ p t d= = − , ( 0rθ r r r )i o

τ = = ,               (7)   
(7)

where sr is the radial stress, trq the shear stress, and d1, d2 
are the quantities equal to 0 or 1, determining the loading 
of the inner or/and outer plate perimeter.

Conditions for the plate edges subjected to only 
thermal loads are expressed by the equation

                          
                            0,    0r rr r r ri o

σ σ= == =                             (8)                

 

(8)

The form of plate imperfection zo (zo = wo/h), important 
in the presented analysis, is expressed by the following 
equation presented in [21]: 
    

(9)
                              
                      ( ) 1 2  oζ ρ,θ ξ ( ρ )η( ρ ) ξ ( ρ )η( ρ )cos( mθ )= +                   (9) 
 
 where wo is the plate initial deflection, m the number of initial 

circumferential waves, x1, x2 are the calibrating numbers, 
h(r)  is a function: h(r)=r4+A1r

2+A2r
2lnr+A3lnr+A4, Ai are 

the quantities fulfilling the conditions of clamped edges.
The solution is based on shape functions for the 

additional plate deflection z1 [21] 

                              ( )1 1ζ ρ,θ ,t X ( ρ,t )cos( mθ )= ,                     (10) 
 
 

(10)

stress function F [21]   

                     2a b cF( ρ,θ ,t ) F ( ρ,t ) F ( ρ,t )cos( mθ ) F ( ρ,t )cos( mθ )= + + ,      (11) 
 
 

(11)

and differences δ , γ  

 

, δ , γ  

 

[14]:

                       ( )δ ρ,θ ,t δ( ρ,t )cos( mθ )= , ( )γ ρ,θ ,t γ( ρ,t )sin( mθ )=         (12) 
 
 

(12)

where 1 2
dw Φ δ γζ , F , δ= , γ=

h Eh h h
= = , , m are the number of 

circumferential waves, which is compatible with the 
initial number (see Eq. (9)) and characterizes the form of 
plate buckling – the mode for plates with x1 calibrating 
number equal to x1 = 0.

Using the orthogonalization method after elimination 
of the angular variable q and approximation of the 
derivatives with respect to r by the central differences 
in the discrete points, the basic system of differential 
equations has been established:

KPU Q U   (13)

                                   Y Y T∆M Y Q==                             (14) 
 
 

(14)

                                   V VM V Q==                               (15) 
 
 

(15)

                                   Z ZM Z Q=                               (16) 
 
 

(16)

                             0D U GM D M U M G++ ++ ==                         (17)  
 
 

(17) 

                          0M G M U M DGG GU GD++ ++ ==                         (18)  
 
 

(18) 

For a mechanically loaded plate with a constant in time–
temperature difference DT = Ti – To between the edges,  
Eq. (14) has been modified to the form

                               Y ΔY T const=M Y Q                              (19)  
 

(19) 

where , , ,U Y Z V  are the vectors whose elements consist 
of the additional deflections and components of the 
stress function, respectively; KPU Q U    is a vector whose 
elements are expressed by the products of the derivative 
of the additional deflection with respect to time t and 
number K, equal to 

'
2

27 oK TK r
h

hh M⋅⋅= ; , , , , ,V Y zQ Q Q Q D G  
are the vectors whose elements consist of the plate 
material parameters, geometrical dimensions, initial 
and additional deflections, number m, dimension radius 
r, and displacement differences d; g; Y TDQ  is a vector 
whose elements are expressed as the difference between 
the suitable element of vector YQ  (vector YQ  is used for 
plates which are not subjected to the temperature field) 
and the number NS T ' ρρ ⋅ ⋅ , which differs in time, 2

2

zrS
h

α=

; Y T constDQ  is a vector whose elements are expressed as 
the difference between the suitable element of vector YQ
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and the number 
lnρ
−i o

i

T TS , which is constant in time; and 
, , , , , , , ,,Y V Z D G GG GD GUUM M M M M M M M P M  are the 

matrices whose elements consist of the plate material 
parameters, geometrical dimensions, number m, FDM 
parameter b (b – the interval in the finite difference 
method), and dimension radius r.

The Runge–Kutta’s integration method for the initial 
state of the plate has been used in the solution of the 
presented system of equations. 

The dimensionless time connected with mechanical 
loading (see Equation (1)) is expressed by t*=t×K7, where 
K7 is the number expressing the rate of mechanical 
loading growth but connected with thermal loading (see 
Equation (2)) and is expressed as t*=t×TK7, where TK7 is 
the number expressing the rate of thermal loading growth.

3.2  Method of Solution Using the Finite 
Element Method 

The plate model built with the use of the finite element 
method has been calculated in the ABAQUS system. The 
calculations were carried out at the Academic Computer 
Center CYFRONET-CRACOW (KBN/SGI_ORIGIN_2000/
PLodzka/030/1999). The dynamic module is the main 

option, which was applied in the dynamic solution 
procedure [22]. The three-layered structure of the FEM 
plate model is composed of shell elements and solid 
ones to build the meshes of the plate facings and the 
core, respectively. 3D nine-node shell elements with six 
active degrees of freedom and 3D 27-node solid elements 
with three active degrees of freedom were used. The 
surface contact interaction with the TIE option was 
assumed to connect the surfaces of the facings and the 
core meshes. 

4  Exemplary Results and Discussion
Table 1 presents the assumed material, geometrical, and 
loading parameters of the examined plate models. 

The ratio x2 of plate initial deflection is described in 
figures as ksi2. In the present analysis, the polyurethane 
foam of the core material is treated as elastic and isotropic. 
The rheological properties of this material are not taken 
into account. The viscoelastic parameters of foam material 
have been assumed in investigations presented by Pawlus 
in works [14] and [18] concerning the three-layered annular 
plates under lateral dynamic mechanical load as well as 
thermal load. The plate is loaded on the outer edge with 

Table 1: Parameters of the plate model.

Geometrical parameters

Inner radius ri, m 0.2

Outer radius ro, m 0.5

Facing thickness h‘, mm 1

Core thickness h2, mm 5

Ratio of plate initial deflection x2 0.5, 1, 2

Material parameters

Steel facing Polyurethane foam of core

Young’s modulus E, GPa 210 E2, MPa 13

Kirchhoff’s modulus G, GPa 80 G2, MPa 5

Poisson’s ratio n 0.3 n2 0.3

Mass density m, kg/m3   7850 m2, kg/m3 64

Linear expansion coefficient a, 1/K  1.2×10-5 a2, 1/K 7×10-5

Loading parameters

Rate of thermal loading growth a, K/s (TK7, 1/s) 200 (20), 800 (20)

Rate of mechanical loading growth s, MPa/s (K7, 1/s) 931 (20)

Constant temperature difference DT, K 800
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the rate s. The plate is subjected to a thermal field with a 
positive or negative gradient.

Two main models of plate loading are analyzed: a 
plate thermally loaded and a plate mechanically and 
thermally loaded. The critical dynamic temperature 
difference DTcrdyn is the main calculation result for plates 
loaded only thermally. Critical dynamic mechanical load 
pcrdyn is the main result of the calculations of plates loaded 
mechanically and thermally. Additionally, to recognize 
the plate dynamic behavior, the time histories of plate 
deflections and the velocity of deflections are designed. 
The analyzed problem is the multiparameter task, for 
which the ratio of plate predeflection is the basic variable.

4.1  Convergence Analysis for the FDM Plate 
Model

The first step of numerical analysis, which is performed 
with using the finite difference method, is the choice of 
the number N of discrete points. Tables 1 and 2 present 
the results of the critical dynamic temperature DTcrdyn and 
the critical dynamic load pcrdyn with relative temperature 
DTb for the FDM plate model with a different number 

N of discrete points equal to N = 11, 14, 17, 21, 26. Table 
2 presents the critical dynamic temperature differences 
DTcrdyn of the FDM plate model with the imperfection ratio 
x2 = 0.5. The plate is thermally loaded with a positive 
temperature gradient. Values of DTcrdyn show a tendency 
to increase with the number N of discrete points. Also, the 
relative difference between the values of DTcrdyn for number 

N = 26 and 21 increases with the number m. Its value for the 
minimal value of DTcrdyn, which exists for m = 7, is less than 
5%, which is treated as a technical error. This is the way 
the number N = 14 of the discrete points has been chosen 
in the FDM numerical calculations. Table 3 presents the 
critical dynamic mechanical load pcrdyn and corresponding 
temperature differences DTb for the axisymmetric (m = 0) 
FDM plate model with the imperfection ratio x2 = 2 loaded 
mechanically and located in the thermal environment. 
The temperature field model is characterized by the rate a 
of a temperature linear growth equal to a = 800 K/s and a 
positive temperature gradient. The values of critical load 
pcrdyn are comparable to the relative difference between the 
values calculated for a different number N, which is about 
5% of the technical error. 

In summary, it can be noticed that values of the 
critical temperature difference and the critical load are 
converged. It confirms that the solution process is correct 
and the numerical calculations are accurate. 

4.2  Thermally Loaded Plate

Figures 2 and 3 show a comparison of the thermal reaction 
of two FDM plate models: axisymmetrical m = 0 and 
circumferentially waved m = 7. Number m = 7 of plate 
buckling waves in a circumferential direction corresponds 
to the minimal value of the critical temperature difference 
between the plate edges DTcrdyn (see Table 2). The plate 
models are loaded thermally with the rate of loading 
growth a = 200 K/s and a = 800 K/s. A temperature field 
model with a positive gradient is considered. Figures 2 
and 3 show the strong plate reaction on the temperature 
growth with a high value of the rate a, a = 800 K/s. Then, 
both the plate modes m = 0 and m = 7 lose dynamic stability 
quickly. However, the temperature difference, which exists 

Table 2: The values of the dynamic, critical temperature differences 
DTcrdyn depending on the number N of discrete points for the FDM 
plate model with the imperfection ratio x2 = 0.5 subjected to a 
positive gradient of the temperature field. 

m DTcrdyn (K)
N = 11 N = 14 N = 17 N = 21 N = 26

0 128.6 130.0 130.1 131.6 131.5

1 131.9 133.7 133.7 134.2 134.7

2 133.5 135.5 135.5 137.2 137.0

3 126.4 129.3 131.2 130.9 132.4

4 117.5 120.7 122.1 123.5 124.8

5 108.7 112.3 114.9 115.9 117.1

6 105.7 108.9 110.4 112.8 113.8

7 103.8 106.8 108.8 109.5 111.7

8 103.7 107.9 110.3 112.8 116.4

Table 3: The values of the dynamic, critical mechanical loads pcrdyn with the corresponding temperature differences DTb for the axisymmetric 
FDM plate model (m = 0) with the imperfection ratio x2 = 2 subjected to a mechanical load and increasing with the value a = 800 K/s 
temperature field with a positive gradient. 

Number N 11 14 17 21 26

pcrdyn (MPa)/DTb (K) 30.74/26.4 29.35/25.2 31.21/26.8 30.74/26.4 31.21/26.8
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between the plate edges at the critical buckling moment 
for the two examined rates a, and the imperfection ratios 
x2 do not differ significantly. Tables 4 and 5 present the 
values of the critical temperature differences DTcrdyn for two 
FDM plate models m = 0 and m = 7, respectively. The values 
of DTcrdyn for the waved m = 7 plate model are smaller than 

those observed for the axisymmetrical m = 0 one. It shows 
that a full analysis, which includes the asymmetric plate 
modes, is required to recognize the different plate thermal 
reactions. Imperfection ratios do not have a significant 
meaning here. 
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Figure 2: Deflections of the axisymmetrical m = 0 plate model versus imperfection ratio x2 under a temperature field with a positive gradient 
and two rates a = 200 K/s and a = 800 K/s.
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Figure 3: Deflections of the asymmetrical m = 7 plate model versus the imperfection ratio x2 under a temperature field with a positive 
gradient and two rates a = 200 K/s and a = 800 K/s.

Table 4: Values of critical temperature differences DTcrdyn for the 
axisymmetrical m = 0 FDM plate model versus the imperfection ratio 
x2 under a temperature field with a positive gradient and two rates  
a = 200 K/s and a = 800 K/s. 

Rate a (K/s) DTcrdyn (K)

x2

0.5 1 2

200 130.0 130.2 130.7

800 132.0 128.4 126.8

Table 5: Values of critical temperature differences DTcrdyn for the 
asymmetrical m = 7 FDM plate model versus the imperfection rate x2 
under a temperature field with a positive gradient and two rates  
a = 200 K/s and a = 800 K/s. 

Ratio a (K/s) DTcrdyn (K)

x2

0.5 1 2

200 107.4 108.0 108.2
800 108.8 108.4 108.4
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Exemplary time histories of plate deflection and 
velocity of deflection for the FDM and FEM plate models 
are shown in Figure 4. Additionally, the axisymmetric m = 
0 form of plate buckling is shown (see Fig. 4b). The FEM 
results are for the plate with the imperfection ratio x2 = 
2 loaded thermally with a = 200 K/s. On comparing the 
results shown in Fig. 4a and b, a good compatibility of 
responses of the FDM and FEM plate models is observed. 
Table 6 presents the values of the critical temperature 
differences DTcrdyn for the axisymmetric m = 0 FEM plate 
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Figure 4: Time histories of deflections and velocity of deflection for plate model m = 0 with the imperfection ratio x2 = 2 loaded thermally 
with a positive temperature gradient, with rate a = 200 K/s: a) FDM model, b) FEM model with critical deflection form.

Table 6: Values of critical temperature differences DTcrdyn for the 
axisymmetrical m = 0 FEM plate model versus the imperfection ratio 
x2 under a temperature field with a positive gradient and two rates  
a = 200 K/s and a = 800 K/s.

Rate a (K/s) DTcrdyn (K)

x2

0.5 1 2

200 115.2 121.2 129.2

800 124.8 128.0 132.8
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model loaded with two rates a = 200 K/s and a = 800 K/s. 
The differences between the critical values DTcrdyn for the 
FEM plate model are clearer than for the FDM plate mode. 
With an increase in imperfection ratio x2 and temperature 
growth rate a, loss of dynamic stability occurs for a higher 
value of the temperature field. 

In summary, it can be observed that the analyzed 
plate modes m = 0 and m = 7 and plate cases loaded 
with different rates a influence the values of the critical 
temperature differences. The imperfection ratio x2 for the 
asymmetric (m = 7) plate mode does not have a significant 
effect on the critical temperature difference DTcrdyn. 

4.3  Mechanically and Thermally Loaded Plate 

The two plate modes m = 0 and m = 7 present the plate 
reaction on the action of the mechanical load and 
temperature field. The selected modes enable showing the 
behavior of the axisymmetric m = 0 and asymmetric plates 
m = 7, whose value of the critical load is minimal [12–14]. 
Both thermomechanical responses of the FDM and FEM 

plate modes are shown in Figs 5–9. Plate imperfection is 
expressed by the ratio x1 = 0 and various values of the 
ratio x2 (see Eq. (9)). The plates are compressed on the 
outer edge with a growth rate equal to s = 931 MPa/s (K7 =  
20 1/s). 

Figure 5 shows the effect of the imperfection ratio x2 
and thermal loading growth a. The presented results are 
for the asymmetric m = 7 FDM plate mode. The analyzed 
value of the temperature loading growth a does not change 
the dynamic response of the plate subjected to only the 
mechanical load a = 0. Very small differences are observed 
for a plate with the value x2 = 0.5. 

A comparison between the reactions of plate modes 
m = 0 and m = 7 is shown in Fig. 6. Plates with the 
imperfection ratio x2 = 2 are subjected to three models 
of thermomechanical loads: without temperature field 
a = 0, with increasing in time temperature difference 
between the plate edges a = 200 K/s and a = 800 K/s, 
and the model with a fixed value of the temperature field 
DT = 800 K (marked in the figures as DT). The results 
presented for a greater value of the rate a = 800 K/s or for 
the plate located in a thermal environment with a high, 
constant temperature difference equal to DT = 800 K can 
be the exemplary dynamic response of the plate under 
the impact of thermal loading, which exists during the 
aerodynamic or laser heating mentioned in work [8]. 
Additionally, two temperature gradients are taken into 
account: positive with a higher value of temperature on 
the inner plate edge and negative with a higher value of 
temperature on the outer edge. Plate mode m = 0 responds 
differently to temperature field profiles. The detailed 
values are presented in Table 7. Critical dynamic load pcrdyn 
and the corresponding temperature difference DTb, when 
a loss of plate stability occurs, decrease with the growth of 
the rate a for a temperature field with a positive gradient 
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Figure 5: Deflections of the asymmetrical m = 7 plate model with different imperfection ratios x2 under mechanical load and thermal load 
with a positive temperature gradient and various rates a.

Table 7: Values of critical dynamic mechanical loads pcrdyn and 
corresponding temperature differences DTb for the axisymmetrical  
m = 0 FDM plate model thermomechanically loaded and imperfected 
with ratio x2 = 2. 

a (K/s)
DT (K)

pcrdyn (MPa)/DTb (K)

x2 = 2

Positive gradient Negative gradient

0 35.8/0 35.8/0
200 34.47/7.4 37.26/8.0
800 27.12/23.2 42.39/36.4
DT = 800 22.36/19.2 44.25/38.0
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and increase when the plate is subjected to a negative 
temperature gradient. Such differences are not observed 
for the plate mode m = 7 (see Fig. 6b). Practically, for all 
examined cases, the same values of pcrdyn = 22.82 MPa and 
the corresponding temperatures DTb = 4.9 K or DTb = 19.6 K 
for the field characterized by the rate a = 200 or 800 K/s, 
or DT = 800 K, respectively, are observed. 

Additionally, the effect of the negative value of 
imperfection ratio x2 has been examined. Selected results 
are presented in Fig. 7 for the FDM plate model. Plate 
reactions are for two plate modes m = 0 and m = 7. The 
plate is compressed on the outer edge and subjected to 
an increase in the time–temperature field with a negative 
gradient. The character of curves z1max = f(t*) is similar 
for the examined plate cases. The lack of influence of 
the negative ratio x2 on the final results is observed. 
On comparing the results obtained for the asymmetric 
plate mode m = 7 with the axisymmetric one m = 0 [11], 
differences are found in the values of critical parameters: 
time, deflection, load with the corresponding temperature 
DTb and also in the supercritical part of curves z1max = f(t*), 

where for axisymmetrical plate m = 0, the vibrations are 
initiated.

Figure 8 shows the exemplary results presented 
for the axisymmetric (m = 0) FEM plate model with two 
imperfection ratios x2 = 1 and x2 = 2 loaded mechanically 
and thermally with a temperature difference increasing in 
time and expressed by a growth parameter a = 200 K/s and 
a = 800 K/s. The temperature field has a positive gradient. 
Time histories of deflections (red lines) and velocity of 
deflections (blue lines) with critical parameters, time tcr 
and dynamic load pcrdyn, are presented. The nature of the 
curves is similar. Increase in the temperature difference 
shortens the time to plate stability loss and decreases 
the critical dynamic loads pcrdyn. This observation is 
of importance in evaluation of the plate buckling 
phenomenon.

Additionally, the correspondence of results between 
the two plate models is shown in Fig. 9. The plate is loaded 
mechanically and thermally with a positive gradient and a 
temperature growth rate a = 200 K/s. The plate imperfection 
ratio x2 = 2. The lines of time histories of deflections and 
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velocity of deflections are similar. The additional black 
lines indicate the points with a maximum value of the 
speed of plate deflections. According to the assumed 
criterion [19], they enable expression of the critical 
time tcr, critical plate deflection, and, after calculation, 
dynamic load pcrdyn as well as the corresponding difference 
in temperatures DTb. The presented results are an example 
confirming the proper calculation process and the method 
of plate modeling. 

The obtained results can be summarized as follows:
 – The minimal value of pcrdyn which is important in 

buckling analysis exists for the axisymmetrical m = 0 
plate model with a greater value of imperfection ratio 
x2 = 2, whose thermal loading is characterized by a 
positive temperature gradient and a higher value of 
temperature difference between the plate edges. 

 – There is a difference between the responses of plates 
subjected to the temperature field increasing in time 
and constant in time.

 – The direction of temperature gradient affects the 
values of critical loads pcrdyn and the corresponding 
values of temperature difference DTb. For a positive 
temperature gradient with an increase in rate a, 
values of pcrdyn decrease and this is the opposite for the 
negative gradient.

 – A greater value of imperfection ratio x2
 decreases the 

critical value of loads: pcrdyn and DTb.

 – The direction of the plate’s initial deflection does not 
affect the plate response.

 – The results obtained for the FDM and FEM plate 
models are comparable. 
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with a positive temperature gradient versus different imperfection 
ratios x2 and temperature growth loads a: a) x2 = 1, a = 200 K/s, b)  
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Figure 9: Time histories of deflections and velocity of deflections 
for a) FDM plate model and b) FEM plate model m = 0, x2 = 1 loaded 
mechanically and thermally with a positive temperature gradient 
and rate a = 200 K/s.
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4.4  Plate with a Complex Form of 
Imperfection

Figures 10 and 11 show the FDM plate model response to 
thermal and thermomechanical loading. The assumed 
plate imperfection is composed of two forms: the 
axisymmetrical one expressed by the calibrating number 
x1 and the form which is dependent on the number m of 
circumferential waves m = 0 or m ≠ 0 calibrated by the 
number x2. Mathematically, this complex form of plate 
imperfection is described by Equation (9). The form 
consists of two terms expressed by the aforementioned 
calibrating numbers x1 (ksi1) and x2 (ksi2). The plate 
thermally loaded is subjected to a positive temperature 
gradient. In the case of complex thermomechanical 
loading, the plate is mechanically compressed with the 
forces on the outer edge and subjected to the thermal 
load with a positive gradient, too. Two exemplary forms 
of plate buckling are examined: axisymmetrical m = 0 and 
waved with the number m = 7 of circumferential buckling 
waves. The value of the number x2 = 1. 

Figure 10 shows the plate’s behavior which was 
invoked by thermal loading only. The increase in the 
axisymmetrical form of imperfection expressed by 
calibrating the number x1 = 5, 10 decreases the values 
of critical temperature differences by more than 10%. 
Additionally, critical plate deflections are observed to be 
increasing. Very small differences in the values of critical 
parameters exist for the plate with several buckling waves 
(here, the analyzed number is m = 7).

The effect of mechanical loads significantly changes 
the nature of plate responses. The effect of the additional 
axisymmetric imperfection shape is presented in Figure 
11a. It should be underlined that the main axisymmetrical 
imperfection is expressed by the second term of Equation 
(9) for a non-zero value of calibrating number x2. 
Axisymmetrical (m = 0) plates with strong imperfection 
(x1 = 10) lose dynamic stability quicker for smaller 
values of critical dynamic loads pcrdyn and corresponding 
temperature difference between the plate edges DTb. In the 
case of the axisymmetrical plate m = 0 with the value x1 = 
5, the area of a possible loss of the plate dynamic stability 
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can be expressed, which is between two rectangular gray 
points shown in Figure 11a. In Figure 11b, the curves of the 
time history of deflection and time history of the velocity 
of deflection present the range of the plate stability loss 
between the points with maximum values of the velocity 
of deflection. An opposite observation can be made for the 
waved form of plate buckling (m = 7), where the increase 
in value x1 of additional imperfection shape increases 
both the values of critical dynamic loads pcrdyn and the 
corresponding temperature DTb. Small fluctuations of 
critical deflections are observed particularly for the 
analyzed plate with the number m = 7.

The effect of the mixed participation of the values of 
imperfection ratios on the run of deflection curves z1max = 
f(t*) is shown in Figure 12. The results are for the positive 
numbers of both ratios x1 and x2 or for the positive and 
negative numbers of ratios x1, x2. The results are presented 
for the case of the FDM plate model where its form of the 
loss of stability corresponds to m = 7 circumferential waves. 
The plate is subjected to only thermal loads with a positive 
gradient. The results show the meaning of the higher 
positive or negative value of ratio x2, where axisymmetric 
predeflection also exists (x10), and the meaning of the 
higher values of ratio x1 (x1 = 5 or x1 = -5) for the positive 
value of the ratio x2. For assumed values of x1, additional 
waved shape of predeflection is expressed by the ratio x2. 
This complex form of predeflection influences the positive 
or negative run of plate deflection curve z1max = f(t*). 

The waved form of plate deflection in a radial direction 
obtained for selected numbers of ratios x1, x2 (x1 = 0, x2 = 1), 
(x1 = 1, x2 = 1), (x1 = 1, x2 = -1) is shown in Figure 13.

The presented results can be summarized as follows:
 – The effect of the additional axisymmetric form of 

plate predeflection expressed by the calibrating 
number x1 causes little change to the values of critical 
temperature differences for the axisymmetrical m = 0 
form of plate buckling. The increase in the value of 
calibrating number x1 decreases the value of critical 
temperature differences. 

 – The imperfection of plates working in a thermal 
environment and subjected to mechanical loads has 
little effect on the critical values, which is dependent 
on the form of plate buckling.  

 – The results show that plate dynamic buckling can be 
expressed by a range of values of critical parameters.

 – Values of ratios x1, x2 determining the form of plate 
predeflection have an effect on plate deflections. The 
effect of ratio x2 which determines the waved form of 
plate predeflection is dominant. The participation 
of the axisymmetrical term of Equation (9) exists for 
higher values of x1. 

5  Conclusions
The paper presents the effect of the temperature field 
on the stability reaction of a plate with various forms of 
imperfection. A three-layered annular plate with thin steel 
facings and a thicker foam core was examined. Different 
shapes and ratios of imperfection were considered. The 
thermal effect on the plate response was analyzed for 
plates subjected to only the thermal environment or 
plates both mechanically loaded and surrounded by a 
temperature field that increased in time or was fixed in 
time. Different elements which characterize the field 
of assumed loading were taken into account. They are 
as follows: the temperature gradient direction, the 
dynamic effect expressed by the rate of temperature 
difference growth, the effect of the mechanical loading 
growth, the sensitivity of the examined plate to negative 
imperfections, and the participation of the axisymmetrical 
term in complex Equation (9), which expresses the form 
of imperfection. Vibrations are an additional element 
which characterizes the dynamic response of the plate. 
In the undertaken analysis, vibrations were observed in 
the overcritical region of plate work under the increasing 
load in time. Particularly, the plate oscillations existed for 
plates with the axisymmetrical buckling mode m = 0 and 
plates with a small value of predeflection (see Figs 7a and 
11a).

The results presented herein show a different 
effect of imperfection parameters on the values of 
critical temperature differences for plates located in a 
temperature field. It depends on the participation of two 
assumed ratios x1 and x2, which describe the shape of 
plate predeflection. A rather minimal effect of a single 
imperfection ratio x2 on the final results has been observed. 
However, the complicated shape of plate predeflection, 
which is expressed by the values of imperfection 
ratios x1 and x2, has an effect on plate thermal dynamic 
response. Two terms of the plate form of predeflection 
(see Eq. (9)) calibrated by the ratios, axisymmetrical  
x1 (x10) and waved x2, reveal the plate structure 
sensitivity. However, the participation of numbers that 
define plate imperfection is not unambiguous and is 
difficult to predict in the evaluation of the process of plate 
buckling behavior. Effective analytical and numerical 
dynamic analysis is of importance here. The plate reaction 
to thermomechanical loading depends on many elements, 
like the parameters of mechanical load, the profile of the 
temperature field, and dynamic rates of mechanical and 
thermal growth. The results show the possibility to design 
the conditions and structure parameters of the composite 
plate to use it more effectively. Further analyses can 
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focus on the evaluation of both structural heterogeneities 
connected with the oriented material properties and the 
imposed form of plate predeflection to obtain the expected 
plate reactions on mechanical and thermal loads. Such 
investigations can be helpful in the plate design process. 
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