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Abstract: The paper focuses on the problem of optimising 
the cooperation between a dynamic vibration absorber 
(DVA) and a structure. The authors analyse a road beam 
bridge equipped with a working platform (deck) used to 
service pipelines installed on the structure. The paper 
studies the problem of choosing the optimal parameters 
for damping absorbers that reduce the random vibration 
of a beam subjected to a random sequence of moving 
forces with a constant velocity. The stochastic properties 
of the load are modelled by means of a filtering Poisson 
process. A single-degree-of-freedom (SDOF) absorber 
model with a multi-degree-of-freedom (MDOF) primary 
structure model are is considered.

Keywords: urban network infrastructure; dynamic 
vibration absorber (DVA); vibration effect; dynamic 
analysis; Poisson process; random vibration.

1  Introduction
The problem of reducing the level of vibrations in various 
constructions has been considered for many years. This is 
especially the case for classic bridge structures when an 
additional platform on which installations, for example, 
pipes with hazardous gas, are installed.

Numerous ways and means of preventing 
unacceptable vibrations are known, with one of these 
methods being use of various vibration absorbers. Their 
application has a special role in civil engineering due 

to the fact that they can be used during a construction’s 
design, as well as later on to modify the structure. Using 
absorbers is an interesting option for reducing the 
vibrations of various types of structures, especially in tall 
buildings [3] or in bridges, for example, the Millennium 
Bridge [1] in London or bridges traversed by high-speed 
trains [2]. Moreover, absorbers can be used to prevent 
large vibration amplitudes that occasionally appear, that 
is, in geotechnical works [4].

The topic of dynamic vibration absorbers (DVAs) 
or tuned mass dampers (TMD) is well established in 
literature. The action of the absorber is accepted as a 
deterministic [5-9] or random process [10-20]. A large 
number of studies have been conducted to optimise the 
design parameters, and hence maximise the performance 
of vibration absorbers. Although the design concept of 
a TMD was developed decades ago, its simplicity and 
effectiveness have made it one of the most popular passive 
vibration methods to suppress structural vibration [21].

In the earlier years of the 20th century, Frahm [22] 
introduced the use of a linear spring mass attachment to 
suppress the oscillations of harmonically excited primary 
structural systems in engineering applications. This 
early DVA was able to reduce the oscillations of primary 
structures with a single degree of freedom, but could 
only reduce vibration transmission in a specific narrow 
frequency band. A spring-supported mass invented by 
Frahm is a dynamic absorber without damping, known 
as a Frahm damper. Ormondroyd and Den Hartog [23] 
increased the effectiveness of the absorber to dissipate the 
energy of the primary structure to harmonic excitations by 
appending a viscous damper parallel to the linear spring. 
Later, a semi-empirical design procedure was established 
by Den Hartog [5]. The DVA proposed by Den Hartog is 
now known as the Voigt-type DVA dynamic vibration 
absorber, where a spring element and a viscous element 
are connected. This is considered as the standard model of 
the DVA. The main objective in the design of the standard 
type DVA is to enable the absorber to have optimum 
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parameters. Due to the fact that the mass ratio of the 
DVA to the primary structure is usually a few percent, the 
principal parameters of the DVA are its tuning ratio (i.e. 
the ratio of the DVA’s frequency to the natural frequency of 
the primary structure) and damping ratio [24]. 

Ormondroyd and Den Hartog [23] developed 
analytical solutions for the optimal design of the classic 
DVA using the fixed-points technique. Den Hartog [5] 
provided an algorithm for selecting the optimal absorber 
parameters, so that the maximum amplitude of vibration 
is minimised over frequencies of deterministic sinusoidal 
excitations, which is essentially an H1 optimisation. Asami 
and Nishihara used H∞ and H2 optimisation methods 
based on the perturbation technique and Vieta’s theory to 
derive analytical solutions for the optimal design of the 
classic DVA [25-26]. Sims [27] introduced a new analytical 
solution based on the criterion of minimising either the 
positive real part or the negative real part of the frequency 
response function. Shen et al. [28] proposed a new strategy 
for obtaining the optimum negative stiffness ratio and to 
also make the system remain stable.

Most works assume that the load process is 
deterministic and that it changes harmonically. The 
problem of the optimisation of absorbers connected with 
a bridge beam loaded by a moving force was considered 
in papers [29-30]. The vibrations of some structures 
are excited by a load of random nature. There are 
relatively few studies on absorbers in which the load is 
a stationary stochastic process [31-34]. In the mentioned 
works, stochastic vibrations were analysed in the field of 
correlation theory and spectral density analysis. 

The earliest research works on the optimal design of a 
DVA were presented for a single degree of freedom (SDOF) 
of a primary structure [5, 22, 23]. In the vast majority of 
papers, the  structure-absorber system is still treated 
as a system with two degrees of freedom (2DOF). The 
optimal design of an absorber is not a new topic, and the 

optimal methodologies and parameters of the optimal 
DVA or TMD system for SDOF main structures subjected to 
different loading conditions have been verified by several 
researchers since the 1960s [21].

The problem of choosing the optimal parameters for 
damping absorbers that reduce the random vibrations of 
a beam subjected to a sequence of moving forces with a 
constant velocity is studied in this paper. Every force is 
regarded as a random variable. Moreover, the inter-arrival 
times of moving forces are regarded as random variables. 
The stochastic properties of the load are modelled by 
means of a filtered Poisson process. The problem was 
solved with the idea of a dynamic influence function 
[35]. Several optimisation criteria, based on the expected 
values and variance of the beam response determined in 
the study, were considered.

2  Formulation of the problem and 
general solutions
Let us consider the damping vibrations of a simply 
supported Euler–Bernoulli beam of finite length L with 
an absorber fitted at point xa subjected to a sequence of 
moving forces with a constant velocity v (see Figure 1). 
The vibrations of the beam are described by the equation 
[36]
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where EI denotes the flexural stiffness of the beam, m 
denotes the mass per unit length of the beam, c is the 
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Figure 1: The model of the system.
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damping coefficient, δ(.) denotes the Dirac delta function 
and r(t) is the force response of the absorber acting on the 
beam. The reaction of absorber on beam can be derived 
from equilibrium of the absorber.

The amplitudes Ak are assumed to be random variables, 
which are both mutually independent and independent 
of the random instants tk. It is assumed that the expected 
values E[Ak]=E[A]=const are known. Random times tk 
constitute a Poisson process N(t) with a parameter λ.

For a finite, simply supported beam, the boundary 
conditions have the following forms:
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Let us introduce two dynamic influence functions – H1(x,t) 
and H2 (x,t-L/v). The function H1 (x,t) is the response of the 
beam at time t (0≤t≤L/v) to a moving force equal to unity 
(Ak=1), and the function H2 (x,t-L/v) is the response of 
the system without excitation, but with non-zero initial 
conditions (the force has already left the beam). These 
influence functions satisfy the following differential 
equations:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝜕𝜕𝜕𝜕
4𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥4

+ 𝑐𝑐𝑐𝑐 𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+ 𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕2𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡2

+  𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎) = 𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 − 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡),  (4) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝜕𝜕𝜕𝜕
4𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥4

+ 𝑐𝑐𝑐𝑐 𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+ 𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕2𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡2

+  𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎) = 𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 − 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡),  (4) 
(4)
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𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻2�𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣�

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
+ 𝑚𝑚𝑚𝑚

𝜕𝜕𝜕𝜕2𝐻𝐻𝐻𝐻2�𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣�

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡2
+  𝑟𝑟𝑟𝑟 �𝑡𝑡𝑡𝑡 − 𝐿𝐿𝐿𝐿

𝑣𝑣𝑣𝑣
� 𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎) = 0,  (5) 
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𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥4
+ 𝑐𝑐𝑐𝑐
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The deflection of the beam wI(x,t) is counted at arbitrary 
time t, and none of the force locations are known. It can be 
written in the Stieltjes integral:

𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∫ 𝐴𝐴𝐴𝐴(𝜏𝜏𝜏𝜏)𝐻𝐻𝐻𝐻1
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜏𝜏𝜏𝜏) + ∫ 𝐴𝐴𝐴𝐴(𝜏𝜏𝜏𝜏)𝐻𝐻𝐻𝐻2
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜏𝜏𝜏𝜏). (8) 

𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∫ 𝐴𝐴𝐴𝐴(𝜏𝜏𝜏𝜏)𝐻𝐻𝐻𝐻1
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜏𝜏𝜏𝜏) + ∫ 𝐴𝐴𝐴𝐴(𝜏𝜏𝜏𝜏)𝐻𝐻𝐻𝐻2
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜏𝜏𝜏𝜏). (8) 

(8)

The expected value of the random function wI(x,t) 
amounts to [37]

𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡)] = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻1
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻2
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏, (9) 

𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡)] = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻1
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻2
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏, (9) 

(9)

whereas the variance amounts to

𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻12
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻22
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏. (10) 

𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻12
𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣

(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻22
𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏. (10) 

(10)

The symbol E[.] denotes the expected value of the quantity 
in the brackets, νA is the coefficient of variation and 
E[A2]=E2[A](1+νA

2). The parameter λ>0 is the intensity of 
the Poisson process and is equal to the average number of 
points per unit of time. The above general solution will be 
used to optimise the absorber parameters. For transient 
vibration, we assume tb=0 and for steady state, tb=-∞. In 
the last case, equations (9) and (10) have the forms

𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥,∞)] = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻1
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
0 (𝑥𝑥𝑥𝑥, 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻2

∞
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 =

= 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤] ,
   (11) 

𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥,∞)] = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻1
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
0 (𝑥𝑥𝑥𝑥, 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻2

∞
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 =

= 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤] ,
   (11) 𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥,∞)] = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆∫ 𝐻𝐻𝐻𝐻1

𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
0 (𝑥𝑥𝑥𝑥, 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻2

∞
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 =

= 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴]𝜆𝜆𝜆𝜆𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤] ,
   (11) 

(11)

𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥.∞) = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻12
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
0 (𝑥𝑥𝑥𝑥, 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻22

∞
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 =

= 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎2 .
  (12) 

𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥.∞) = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻12
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
0 (𝑥𝑥𝑥𝑥, 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻22

∞
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 =

= 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎2 .
  (12) 𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥.∞) = 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻12

𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
0 (𝑥𝑥𝑥𝑥, 𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 + 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆 ∫ 𝐻𝐻𝐻𝐻22

∞
𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣

�𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
�𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 =

= 𝐸𝐸𝐸𝐸[𝐴𝐴𝐴𝐴2]𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎2 .
  (12) 

(12)

3  Determination of the dynamic 
influence function
In the case of a simply supported beam, one can look for 
dynamic influence functions in the form of sine series
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𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛∞
𝑛𝑛𝑛𝑛=1 (𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿
,     (13) 

𝐻𝐻𝐻𝐻2 �𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� = ∑ 𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛∞

𝑛𝑛𝑛𝑛=1 �𝑡𝑡𝑡𝑡 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿
.    (14) 

(13)

    

𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛∞
𝑛𝑛𝑛𝑛=1 (𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿
,     (13) 

𝐻𝐻𝐻𝐻2 �𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� = ∑ 𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛∞

𝑛𝑛𝑛𝑛=1 �𝑡𝑡𝑡𝑡 − 𝐿𝐿𝐿𝐿
𝑣𝑣𝑣𝑣
� sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿
.    (14) (14)

By substituting expressions (13) and (14) into equations 
(4) and (5), and using the orthogonality method 
(multiplying by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿  , integrating over 0≤x≤L and taking 
into consideration j first eigenforms), one can obtain the 
following sets of ordinary equations:

𝑑𝑑𝑑𝑑2𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 2𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿

= 2
𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿

sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝐿𝐿

,  (15) 

𝑑𝑑𝑑𝑑2𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 2𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿

= 0,  (16) 
𝑑𝑑𝑑𝑑2𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2
+ 2𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
+ 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎

𝐿𝐿𝐿𝐿
= 2

𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿
sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐿𝐿𝐿𝐿
,  (15) 

𝑑𝑑𝑑𝑑2𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 2𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿

= 0,  (16) 

(15)𝑑𝑑𝑑𝑑2𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 2𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2𝑦𝑦𝑦𝑦1𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿

= 2
𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿

sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝐿𝐿

,  (15) 

𝑑𝑑𝑑𝑑2𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 2𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+ 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2𝑦𝑦𝑦𝑦2𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿

= 0,  (16) 
(16)

where = 1,2, … , 𝑗𝑗𝑗𝑗, 2𝛼𝛼𝛼𝛼 = 𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚

, 𝜔𝜔𝜔𝜔𝑛𝑛𝑛𝑛2 = �𝑛𝑛𝑛𝑛 𝜋𝜋𝜋𝜋
𝐿𝐿𝐿𝐿
�
4 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑚𝑚𝑚𝑚

.  The parameter 
j in the tests varied from  1  to  20, while for further 
calculations, it was found that a sufficient number was j 
= 5. The initial conditions for the functions y1n(t) and y2n(t) 
result directly from conditions (6) and (7).

4  Absorber equations
The equations of motion and the r(t) reaction of their 
impact on the beam will be derived. The vibrations of 
the SDOF absorber attached to the beam at point xa are 
described by the following equation:

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑2𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 �
𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

− 𝑑𝑑𝑑𝑑𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

� + 𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎[𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡) − 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎 , 𝑡𝑡𝑡𝑡)] = 0,  (17) 

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑2𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 �
𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

− 𝑑𝑑𝑑𝑑𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

� + 𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎[𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡) − 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎 , 𝑡𝑡𝑡𝑡)] = 0,  (17) 
(17)

which, after taking into account (13) or (14) and the j first 
eigenforms, has the form

 𝑑𝑑𝑑𝑑2𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

+ 2𝛼𝛼𝛼𝛼𝑎𝑎𝑎𝑎 �
𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

− ∑ 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

𝑗𝑗𝑗𝑗
𝑛𝑛𝑛𝑛=1 sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎

𝐿𝐿𝐿𝐿
� +

+𝜔𝜔𝜔𝜔𝑎𝑎𝑎𝑎2 �𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)− ∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗
𝑛𝑛𝑛𝑛=1 (𝑡𝑡𝑡𝑡)sin 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎

𝐿𝐿𝐿𝐿
� = 0

,   (18) (18)

where i=1,2 and 𝑠𝑠𝑠𝑠 = 1,2 and 2𝛼𝛼𝛼𝛼𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎

, 𝜔𝜔𝜔𝜔𝑎𝑎𝑎𝑎2 = 𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎

. 

The reaction r(t) between the beam and the absorber is 
given by the following equation:

𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑2𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

.     (19) 

Min 𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥,∞)] = Min 𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤],    (20) 

(19)

It is assumed that the reaction r(t) acts upwards on the 
beam. After substituting dependence (19) to equations 
(15) and (16), two separate systems of ordinary differential 
equations, together with equation (18), are obtained, for 
which solutions are achieved by numerical integration 
using Wolfram Mathematica [38]. As a standard, this 
software uses the Runge–Kutta method, automatically 
selecting the integration step; in the calculations, the 
maximum integration step was limited to one-thousandth 
of the passing time. 

5  Optimisation criteria and 
reliability assessments
The issue of optimising absorber parameters has been 
considered in many studies. The problem cannot always 
be solved in an analytical way, especially in the case of 
stochastic loads. Moreover, it is possible to adopt various 
optimisation criteria. The solution of the optimisation 
problem depends both on the speed of the moving force 
and the parameters of the beam.

Let us assume the following optimisation criteria:
𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑2𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

.     (19) 

Min 𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥,∞)] = Min 𝐸𝐸𝐸𝐸[𝑤𝑤𝑤𝑤],    (20) (20)

Min 𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥,∞) = Min 𝜎𝜎𝜎𝜎2.     (21) 

ℎ = 𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) = Max 𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡).    (22) 

(21)

Let h denote the maximum displacement of the beam in 
section x (e.g. x = 0.5L), which is caused by the passage of 
a unit force (A = 1):

Min 𝜎𝜎𝜎𝜎𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼2 (𝑥𝑥𝑥𝑥,∞) = Min 𝜎𝜎𝜎𝜎2.     (21) 

ℎ = 𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) = Max 𝐻𝐻𝐻𝐻1(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡).    (22) (22)

The knowledge of the quantity h allows the problem 
of parameter optimisation in terms of assessing the 
beam’s reliability to be formulated. Let us assume that 
FA(x) denotes the log-normal distribution function of 
the random amplitude Ai, of which the expected value 
and variance are known. A force of Ai amplitude causes 
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maximum displacement of the beam equal to Aih. Let 
function F(x,t)max determine the distribution of beam 
response maxima in a given period (0,t) It is assumed 
that the time of a single passage is small enough, when 
compared to the time of exploiting the structure, that it can 
be omitted, and therefore, a single passage can be treated 
as an impulse. This function is given by the equation [39]:

𝐹𝐹𝐹𝐹max(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝑃𝑃𝑃𝑃{𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 𝑘𝑘𝑘𝑘}∏ �𝑃𝑃𝑃𝑃 �𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ≤
𝑥𝑥𝑥𝑥
ℎ
��𝑗𝑗𝑗𝑗

𝑖𝑖𝑖𝑖=1 = ∑ 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴
𝑗𝑗𝑗𝑗∞

𝑗𝑗𝑗𝑗=1
∞
𝑖𝑖𝑖𝑖=1 �𝑥𝑥𝑥𝑥

ℎ
�,  (23) 

𝐹𝐹𝐹𝐹max(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �−𝜆𝜆𝜆𝜆𝑡𝑡𝑡𝑡 �1 − 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑥𝑥𝑥𝑥
ℎ
���.    (24)      𝐹𝐹𝐹𝐹max(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝑃𝑃𝑃𝑃{𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 𝑘𝑘𝑘𝑘}∏ �𝑃𝑃𝑃𝑃 �𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ≤

𝑥𝑥𝑥𝑥
ℎ
��𝑗𝑗𝑗𝑗

𝑖𝑖𝑖𝑖=1 = ∑ 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴
𝑗𝑗𝑗𝑗∞

𝑗𝑗𝑗𝑗=1
∞
𝑖𝑖𝑖𝑖=1 �𝑥𝑥𝑥𝑥

ℎ
�,  (23) 

𝐹𝐹𝐹𝐹max(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �−𝜆𝜆𝜆𝜆𝑡𝑡𝑡𝑡 �1 − 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑥𝑥𝑥𝑥
ℎ
���.    (24) 

(23)

where pn(t) is the probability of j pulses in time (0,t).
Considering that the N(t) process is a Poisson process 

with parameter λ>0, the above equation can be presented 
in the form [39]:

𝐹𝐹𝐹𝐹max(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝑃𝑃𝑃𝑃{𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 𝑘𝑘𝑘𝑘}∏ �𝑃𝑃𝑃𝑃 �𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ≤
𝑥𝑥𝑥𝑥
ℎ
��𝑗𝑗𝑗𝑗

𝑖𝑖𝑖𝑖=1 = ∑ 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴
𝑗𝑗𝑗𝑗∞

𝑗𝑗𝑗𝑗=1
∞
𝑖𝑖𝑖𝑖=1 �𝑥𝑥𝑥𝑥

ℎ
�,  (23) 

𝐹𝐹𝐹𝐹max(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �−𝜆𝜆𝜆𝜆𝑡𝑡𝑡𝑡 �1 − 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑥𝑥𝑥𝑥
ℎ
���.    (24) (24)

The above solutions can be used to optimise the 
parameters of the absorber with respect to reliability. As 
the first criterion, we can assume a minimum probability 
of exceeding the permissible level Δ by a single pulse. This 
probability pf  is given by the equation [39]:

𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 1 − 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟 = 1− Φ�
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛�∆ℎ�−𝐸𝐸𝐸𝐸[𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]

𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙
2 �,    (25) (25)

where Φ(.) is the standard normal distribution.
The next criterion assumes the probability that the 

maximum vibrations in the period (0,T) will not exceed Δ 
level. This probability is equal to [39]:

  
𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟(𝑇𝑇𝑇𝑇) = 1 − 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓(𝑇𝑇𝑇𝑇) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �−𝜆𝜆𝜆𝜆𝑇𝑇𝑇𝑇[�1− 𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 �

∆
ℎ
���,  (26) (26)

where

𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 �
Δ
ℎ
� = Φ�

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛�Δℎ�−𝐸𝐸𝐸𝐸[𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]

𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙
2 �    (27) 

 

(27)

and 𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴2 = ln( 1 + 𝜈𝜈𝜈𝜈𝐴𝐴𝐴𝐴2),  𝐸𝐸𝐸𝐸[𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙] = 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴 = ln(𝐸𝐸𝐸𝐸[𝑙𝑙𝑙𝑙])− 1
2
𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴2. =ln(1+νA

2), E[lnA]=mlnA =ln(E[A])-𝜎𝜎𝜎𝜎𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴2 = ln( 1 + 𝜈𝜈𝜈𝜈𝐴𝐴𝐴𝐴2),  𝐸𝐸𝐸𝐸[𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙] = 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴 = ln(𝐸𝐸𝐸𝐸[𝑙𝑙𝑙𝑙])− 1
2
𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴2.  σA

2.

6  Numerical analysis
The model of the structure refers to a road bridge with a 
suspended platform equipped with municipal technical 
infrastructure. It is a reinforced concrete beam bridge with 
a span of L=30 m, in which the first eigenfrequency ωs=4 
rad/s. After analysing a range of 3–20 forms, it was found 
that 5 eigenforms can be adopted for further calculations. 
Different positions of the absorbers, xa∈(0,L), were 
considered. Various parameters of the absorber were 
analysed (μ=Ma/mL, κ=ωa/ωs). Since E[A], E[A2] and λ 
are constant for the homogeneous Poisson process, the 
figures below show the deflections, expected values and 
variances of displacements in the middle of the span of 
the bridge beam without the value of these parameters.

Figures 2 and 3 show that the deflection of the 
structure is in three places (xa=L/4,L/2,3/4L). Figure 2 
shows deflections of the structure with the absorber (μ=Ma/
mL=0.05, κ=ωa/ωs=1). It was assumed that the vehicle traffic 
moves at a critical speed, which was adopted according to 
the well-known formula (𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋𝜋𝜋�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸/𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿2). .

As shown in the figure above, the beam deflection 
in one-fourth of its length on the left and right sides is 
almost identical after the travel time has elapsed. Slight 
changes are visible at the beginning of the observation. A 
similar situation can be seen for the structure without an 
absorber (see Figure 3). It is obvious that deflection in the 
middle is greater than at one-fourth of the beam’s length.

Various tuned absorbers were analysed. The influence 
of κ=ωa/ωs parameter is definitely greater than that of 
mass μ=Ma/mL. Figure 4 shows three deflections in the 
middle of the beam: the blue line is for a structure without 
an absorber, the orange line is for an absorber with 
parameters μ=0.05, κ=1 and the green line is for μ=0.05, 
κ=2.

Figure 5 shows three deflections in the middle of the 
beam: the blue line is for a structure without an absorber, 
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Figure 2: Deflection of the structure. An absorber with parameters 
μ=0.05, κ=1.
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the orange line is for an absorber with parameters μ=0.05, 
κ=1 and the green line is for μ=0.025, κ=1.

The graphs below show the analysis of the absorber 
with the parameters μ=0.05, κ=1. When comparing Figures 
3–5, it can be seen that the absorber is well-tuned, which 
means that it reduces the vibrations of the beam. The 
influence of the velocity of mobile vehicles was also 
analysed (see Figures 6 and 7).

A wide range of analysis of the influence of the 
absorber mass was adopted for μ∈〈0,0.3〉. In practice, up 
to 10% is usually used (μmax=0.1). As shown in Figure 8a, 
the expected value of the displacement in the middle of 
the span of the bridge beam, along with the equipment 
and technical infrastructure, does not depend on the 
absorber’s mass. Similarly, a wide range of analysis of 
the influence of the absorber frequency was adopted, 

κ∈〈0.5,2.5〉. In practice, an absorber with a frequency 
similar to the structure’s frequency (κ≈1) is most often 
used. As shown in Figure 8b, the expected value of the 
displacement in the midspan does not depend on the 
absorber’s frequency. However, the impact of the velocity 
of cars is very large. The analysed range for the selected 
structure is 68–336 km/h. A higher speed corresponds 
to a smaller deflection (the greater the influence of the 
absorber).

As shown in Figure 9a and b, the variance of these 
displacements also depends on velocity, but in a different 
way than is expected. The biggest variance of deflection 
is when the velocity of the passage is within the range 
0.6–0.8 vcr with regards to the analysis of both the μ and 
κ parameters. However, there is a slight influence of the 
mass ratio (see Figure 9a). Good results can be seen for 
μ∈〈5%,15%〉. When μ<5% and μ>20% for v=(0.6-0.8)vcr, the 
variance increases. The influence of the frequency ratio 
can also be seen (see Figure 9b). The smaller the κ, the 
smaller the deflection is in the range of critical velocity.
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Figure 3: Deflection of the structure without an absorber.
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Figure 4: Deflection of the structure in the midspan for two 
absorbers with different κ.

2 4 6 8
t

0.005

0.005

wI t

0
0.05, 1
0.05, 2

2 4 6 8
t

0.005

0.005

wI t

0
0.025, 1
0.05, 1

Figure 5: Deflection of the structure in the midspan for two 
absorbers with different μ.
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Figure 6: Deflection of the structure without an absorber in the 
middle of the beam for three velocities.
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Figure 7: Deflection of the structure with the absorber μ=0.05, κ=1 
in the middle of the beam for three velocities.
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Figure 8: The expected value of deflections in the midspan for different vehicle velocities and also for (a) different parameters μ of the 
absorbers and (b) different parameters κ of the absorbers.

Figure 9: The variance of deflections in the midspan for different vehicle velocities, and also for (a) different parameters μ of the absorbers 
and (b) different parameters κ of the absorbers.

Figure 10: Deflections in the midspan for different locations of the absorber: (a) the expected value and (b) the variance.
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The subject of the research was also the location of 
the absorber. Is it really the best solution to install the 
DVA in the middle of the beam? The authors obtained 
an answer that the optimal operation of the absorber is 
when it is installed in the range of 0.3–0.6 of the beam’s 
span. Figure 10 shows the dependence between both the 
expected value and the variance of the midspan deflection 
and the absorber’s position. The results are presented for 
different velocities of motor vehicles.

7  Conclusion and comments
According to Warburton [40], it is well-known that under 
the same optimisation procedure, the performance of the 
TMD system is better with an increase of the total mass of 
the attached TMD. This study analysed the range of the 
absorber mass from 0 to as much as 30% of a structure’s 
mass. Years ago, it was accepted that the total mass of the 
attached absorbers should not exceed 10% of the mass of 
the main system.

After analysing the influence of the absorber’s μ=Ma/
mL and κ=ωa/ωs parameters, as well as its location along 
the length of the bridge beam (together with technical 
infrastructure devices), it was found that the variance of 
displacements in the middle of the span should be taken 
into account when optimising the absorber. The smaller 
the variance, the better the tuned absorber is. It was found 
that the expected value of deflection is not significant 
when tuning the absorber.

In the case of the analysed reinforced concrete beam 
bridge with a span of 30 m, on which a platform, along 
with the technical infrastructure, was installed (e.g. 
hazardous gas), the optimal absorber has parameters 
in the following ranges: mass Ma≤0.05 mL,0.10 mL> 
(5%–10% of the total mass of the structure) and ωa=ωs (the 
absorber’s frequency is equal to the structure’s frequency.
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