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Abstract: This paper deals with elementary geotechnical 
tests: triaxial and direct shear of cohesionless sand using 
the discrete element method (DEM). The capabilities of 
the numerical DEM code are shown, with a special focus 
on the early phenomena appearance in localization zones. 
The numerical tests were performed in 3D conditions with 
spherical grains. Contact moments law was introduced 
due to simulate not perfectly round sand grains. The 
influence of different physical parameters was studied, 
e.g. initial density or confining pressure. The sieve curve 
corresponded to the Karlsruhe sand [1]; however, in some 
tests, it was linearly scaled. Special attention was laid 
on the behaviour of the sand grains inside localization, 
e.g. rotation, porosity, fluctuations, etc. and forces 
redistribution. Emphasis was given on the pre-failure 
regime and early localization predictors.
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1  Introduction
Stability of the geotechnical structures is one of the most 
common issues in civil engineering. A deep understanding 
of shear localization phenomena in granular media 
can improve the safety of the structures like tunnels, 
foundations, retaining walls, etc. Two main approaches 
are used these days to describe granular behaviour, i.e. 
continuum and discrete. For continuum study, different 
models are used, e.g. elasto-plasticity [2–4], hypoplasticity 
(based on the micropolar, non-local, gradient and viscous) 
[5–8] and discontinuity (i.e. XFEM) [9,10]. However, for 
strongly discontinuous, heterogeneous and non-linear 

granular material, the discrete simulations are becoming 
more popular and widely used [11–14]. The shear strain 
localization phenomena around geotechnical structures 
were studied in [15,16]. Since continuum models can be 
used on a global scale (real engineering problems), the 
discrete approaches are more suitable for grain-level 
behaviour study. The fabric properties, an assemblage of 
independent grains’ interactions, has immediate physical 
appeal. In the literature, direct shear tests were performed 
[17–19], however, without deep structure study in pre-
peak regime. In [20], the parameters in direct shear in 3D 
conditions were studied; however, only 11,700 elements 
were used. It gives only about 30 spheres in high, which 
could affect the localization. Moreover, only post-peak 
behaviour was studied. A large number of spherical 
elements (as in our studies) were used in [21,22]; however, 
there is a lack of grain-level studies. Notice that, the 
discrete methods have limitation nowadays due to the 
computational power [23,24]. Usually, they are restricted 
to small laboratory problems and tests, which involve 
less than hundreds of thousands particles. However, 
the parallelization technique, which is more and more 
popular, will soon open the discrete calculations for real 
geotechnical issues.

The aim of this study is to find the best predictor 
for new localization creation. The early predictors for 
instability in granular materials are important due to 
the safety issue. This knowledge is essential, not just for 
prediction and control of mechanical performance, but 
also for rational design and fabrication of mechanically 
robust particulate materials by optimization of their 
structure. Different approaches were used by researchers. 
The so-called vortex structures (obtained from strain 
fluctuations) were introduced as such predictors. They 
were observed both in the laboratory [25–27] as a result of 
chaotic rearrangement and also in numerical calculations 
[17,28–35]. Another known method is based on network 
flow theory [36]. The aim of the network flow analysis is to 
optimize the flow of an entity through a network, given the 
network topology and finite link capacities that cannot be 
exceeded [36]. Both these methods are out of the scope of 
this article.
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We focused on the different phenomena obtained 
inside localization zones and showed what kind of 
behaviour appears first. The basic geotechnical laboratory 
tests were performed. First, the triaxial test was presented 
and numerical calculations were directly compared with 
experimental data [1] to calibrate the model. Also, the 
influence of initial parameters (void ratio and pressure) 
was checked and compared to Wu experiments [1]. Next, 
the direct shear tests were performed, also with different 
initial parameters. The main focus was laid on the 
formation of the localization zone in a pre-peak regime. 
The grain-scale behaviours, such as grains movement 
(with fluctuations), grain rotation, porosity, coordination 
number, were carefully studied. Besides geometrical 
phenomena, the forces on individual grains were also 
examined.

The novel points are 3D calculations of direct shear 
with a large number of spheres with a real mean grain 
diameter of sand (tens of particles along the height). 
Therefore, it was possible to perform a comprehensive 
study of the localization structure, including geometrical 
characteristics (e.g. displacements, rotations, void ratio, 
etc.) and forces, in the pre-peak regime. The real grain 
size allows us to find the phenomena in shear bands. 
The new studies of the most important behaviour of sand 
grains before the peak are presented here, in contrast to 
the other articles. The article is arranged as follows. A 
brief discrete model and the numerical code descriptions 
used are given in Section 2. The calibration and results in 
comparison to experimental data are presented in Section 
3. The results from numerical triaxial tests with different 
initial parameters are shown in Section 4. In Section 5, 
the direct shear tests are presented. The behaviour of the 
localized zone in direct shear only is discussed in Section 
6. We conclude in Section 7.

2  Discrete model
The granular system was simulated using the discrete 
element method (DEM). It belongs to a family of discrete 
methods which allows to compute the motion and impacts 
of a large number of elements. The methods are widely 
used in many different industries [37–39]. In geotechnical 
problems, it was proved to be a powerful technique for 
researchers [17,43]. The main advantage is the high level 
of detail in the output describing the behaviour of the 
particles. The soil structures consist of an assemblage 
of discontinuous grains (spheres) [44]. The motion of 
every single particle is directly calculated using Newton’s 
second law and contact relations to account for the inter-

particle contact forces. The problem is further simplified 
for a case in which particles are idealized by perfect 
spheres; however (not in this article), more complicated 
shapes can also be easily used [45,46]. For example, the 
novel so-called poly-superellipsoid has been proposed in 
an open-source DEM code SudoDEM [47]. The particles 
are considered as perfectly rigid bodies, but with smooth 
(soft) contacts (so-called overlaps). Newton’s second 
law is discretized by finite difference shape, solved in an 
explicit way.

Typical DEM calculations start with detecting current 
particles’ positions and contacts between them (or 
contacts with the other elements such as walls, boxes 
or facets). Inter-particle forces at the contact points are 
calculated based on the set of constitutive relations (Fig. 
1). These forces (and external ones, i.e. gravity) are used 
next to update the particle motion using equations of 
motion, and the analysis proceeds to the subsequent time 
step.

In our work, the open-source discrete code YADE was 
used [48,49]. All grains interact via a linear elastic law and 
Coulomb friction when they are in contact. The simple 
constitutive law was chosen. The normal and tangential 
forces acting between two elements are calculated from 
Eqns 1 and 2 (Fig. 2):

𝐹⃗𝐹𝑛𝑛 = 𝐾𝐾𝑛𝑛𝑈𝑈𝑁⃗⃗⃗𝑁, (1)(1)

𝐹⃗𝐹𝑠𝑠 = 𝐹⃗𝐹𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛥𝛥𝐹⃗𝐹𝑠𝑠,  with  𝛥𝛥𝐹⃗𝐹𝑠𝑠 = 𝐾𝐾𝑠𝑠𝛥𝛥𝑋⃗𝑋𝑠𝑠, (2)

𝑁𝑁 𝑋⃗𝑋

𝐾𝐾𝑛𝑛 = 𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
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.        (3)

𝛥𝛥𝛥𝛥 = 𝐾𝐾𝑟𝑟𝛥𝛥 𝜔⃗⃗𝜔 ⃗             with 𝐾𝐾𝑟𝑟 = 𝛽𝛽𝛽𝛽𝑠𝑠𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵,        (4) where 

𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
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𝐹⃗𝐹𝑠𝑠 = 𝐹⃗𝐹𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛥𝛥𝐹⃗𝐹𝑠𝑠,  with  𝛥𝛥𝐹⃗𝐹𝑠𝑠 = 𝐾𝐾𝑠𝑠𝛥𝛥𝑋⃗𝑋𝑠𝑠, (2)
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(2)

where U is an overlap (penetration depth) between the 
spheres in contact (U > 0 denotes contact, U = 0 if there is 
no contact), 𝐹⃗𝐹𝑛𝑛 = 𝐾𝐾𝑛𝑛𝑈𝑈𝑁⃗⃗⃗𝑁, (1) is a normal vector at the contact point and 
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𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
2 𝐹𝐹𝑛𝑛 ≤ 0. (5)

 is the incremental tangential displacement. Kn and Ks 

are the normal and tangential stiffness, correlated with 
a modulus of elastic of grain contact (Ec), grain radius of 
spheres A and B in contact (RA and RB) and stiffness ratio 
[50] (νc) as shown below: 
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(3)

The Coulomb condition |Fs| ≤ µFn requires an incremental 
evaluation of Fs at every time step, which leads to some 
amount of slip each time when  Fs = ± µFn. Parameter µ 
denotes the friction coefficient between elements. As 
mentioned above, in this paper, only spherical elements 
were used. However, to realistically capture the particle 
behaviour, some rolling resistance has to be introduced. 
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It simulates the non-perfect shape of the real particles. 
In this code, the so-called contact moments law between 
spheres (Fig. 2C) is used. Consequently, the grain 
roughness can be simulated. However, this approach has 
several limitations, i.e. void ratio and mean coordination 
number may produce less realistic results in comparison 
with real-shape grains [51]. It was proved that particle 
shape strongly affects on void-based fabric [52]. The 
contact moments increments are calculated using the 
rolling stiffness Kr:
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𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
2 𝐹𝐹𝑛𝑛 ≤ 0. (5)

𝐹⃗𝐹𝑠𝑠 = 𝐹⃗𝐹𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛥𝛥𝐹⃗𝐹𝑠𝑠,  with  𝛥𝛥𝐹⃗𝐹𝑠𝑠 = 𝐾𝐾𝑠𝑠𝛥𝛥𝑋⃗𝑋𝑠𝑠, (2)

𝑁𝑁 𝑋⃗𝑋

𝐾𝐾𝑛𝑛 = 𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

             and              𝐾𝐾𝑠𝑠 = 𝜐𝜐𝑐𝑐𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

.        (3)

𝛥𝛥𝛥𝛥 = 𝐾𝐾𝑟𝑟𝛥𝛥 𝜔⃗⃗𝜔 ⃗             with 𝐾𝐾𝑟𝑟 = 𝛽𝛽𝛽𝛽𝑠𝑠𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵,        (4) where 

𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
2 𝐹𝐹𝑛𝑛 ≤ 0. (5)

𝐹⃗𝐹𝑠𝑠 = 𝐹⃗𝐹𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛥𝛥𝐹⃗𝐹𝑠𝑠,  with  𝛥𝛥𝐹⃗𝐹𝑠𝑠 = 𝐾𝐾𝑠𝑠𝛥𝛥𝑋⃗𝑋𝑠𝑠, (2)

𝑁𝑁 𝑋⃗𝑋

𝐾𝐾𝑛𝑛 = 𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

             and              𝐾𝐾𝑠𝑠 = 𝜐𝜐𝑐𝑐𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

.        (3)

𝛥𝛥𝛥𝛥 = 𝐾𝐾𝑟𝑟𝛥𝛥 𝜔⃗⃗𝜔 ⃗             with 𝐾𝐾𝑟𝑟 = 𝛽𝛽𝛽𝛽𝑠𝑠𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵,        (4) where 

𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
2 𝐹𝐹𝑛𝑛 ≤ 0. (5)

(4)

where 

𝐹⃗𝐹𝑠𝑠 = 𝐹⃗𝐹𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛥𝛥𝐹⃗𝐹𝑠𝑠,  with  𝛥𝛥𝐹⃗𝐹𝑠𝑠 = 𝐾𝐾𝑠𝑠𝛥𝛥𝑋⃗𝑋𝑠𝑠, (2)

𝑁𝑁 𝑋⃗𝑋

𝐾𝐾𝑛𝑛 = 𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

             and              𝐾𝐾𝑠𝑠 = 𝜐𝜐𝑐𝑐𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

.        (3)

𝛥𝛥𝛥𝛥 = 𝐾𝐾𝑟𝑟𝛥𝛥 𝜔⃗⃗𝜔 ⃗             with 𝐾𝐾𝑟𝑟 = 𝛽𝛽𝛽𝛽𝑠𝑠𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵,        (4) where 

𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
2 𝐹𝐹𝑛𝑛 ≤ 0. (5)

 denotes the angular increment rotation and 
β denotes the dimensionless rolling stiffness coefficient. 
The limit of the rolling resistance is controlled by the 
second dimensionless coefficient

𝐹⃗𝐹𝑠𝑠 = 𝐹⃗𝐹𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛥𝛥𝐹⃗𝐹𝑠𝑠,  with  𝛥𝛥𝐹⃗𝐹𝑠𝑠 = 𝐾𝐾𝑠𝑠𝛥𝛥𝑋⃗𝑋𝑠𝑠, (2)

𝑁𝑁 𝑋⃗𝑋

𝐾𝐾𝑛𝑛 = 𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

             and              𝐾𝐾𝑠𝑠 = 𝜐𝜐𝑐𝑐𝐸𝐸𝑐𝑐
2𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵

.        (3)

𝛥𝛥𝛥𝛥 = 𝐾𝐾𝑟𝑟𝛥𝛥 𝜔⃗⃗𝜔 ⃗             with 𝐾𝐾𝑟𝑟 = 𝛽𝛽𝛽𝛽𝑠𝑠𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵,        (4) where 

𝛥𝛥 𝜔⃗⃗𝜔 ⃗de

𝑀𝑀 − 𝜂𝜂 𝑅𝑅𝐴𝐴+𝑅𝑅𝐵𝐵
2 𝐹𝐹𝑛𝑛 ≤ 0. (5)(5)

The mechanical responses of the model are presented in 
Fig.2.

To dissipate excess kinetic energy the local non-
viscous damping scheme was adopted [53]:

6

𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 = 𝑀⃗⃗⃗𝑀𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔⃗⃗⃗̇𝜔𝑘𝑘)|𝑀⃗⃗⃗𝑀𝑘𝑘|,          (6)

where 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 - the damped contact force and moment, 𝐹⃗𝐹𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑘𝑘 - the kth components

of the residual contact force and contact moment vector, 𝜈⃗𝜈𝑘𝑘 and 𝜔⃗⃗⃗̇𝜔𝑘𝑘 are the kth components of the

translational and rotational velocities of spheres and αd - the positive numerical damping 

coefficient smaller than 1 [53] (sgn(•) returns the sign of the kth component of the translational 

and rotational velocity).

Fig.1: Two spheres in contact with forces and momentum acting on them (𝐹⃗𝐹𝑛𝑛 - normal contact 

force, 𝐹⃗𝐹𝑠𝑠 – tangential contact force, 𝑀⃗⃗⃗𝑀𝑟𝑟 - contact moment force and 𝑛⃗⃗𝑛 - contact normal vector)

[48]

and

6

𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 = 𝑀⃗⃗⃗𝑀𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔⃗⃗⃗̇𝜔𝑘𝑘)|𝑀⃗⃗⃗𝑀𝑘𝑘|,          (6)

where 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 - the damped contact force and moment, 𝐹⃗𝐹𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑘𝑘 - the kth components

of the residual contact force and contact moment vector, 𝜈⃗𝜈𝑘𝑘 and 𝜔⃗⃗⃗̇𝜔𝑘𝑘 are the kth components of the

translational and rotational velocities of spheres and αd - the positive numerical damping 

coefficient smaller than 1 [53] (sgn(•) returns the sign of the kth component of the translational 

and rotational velocity).

Fig.1: Two spheres in contact with forces and momentum acting on them (𝐹⃗𝐹𝑛𝑛 - normal contact 

force, 𝐹⃗𝐹𝑠𝑠 – tangential contact force, 𝑀⃗⃗⃗𝑀𝑟𝑟 - contact moment force and 𝑛⃗⃗𝑛 - contact normal vector)

[48]

(6)

where 

6

𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 = 𝑀⃗⃗⃗𝑀𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔⃗⃗⃗̇𝜔𝑘𝑘)|𝑀⃗⃗⃗𝑀𝑘𝑘|,          (6)

where 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 - the damped contact force and moment, 𝐹⃗𝐹𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑘𝑘 - the kth components

of the residual contact force and contact moment vector, 𝜈⃗𝜈𝑘𝑘 and 𝜔⃗⃗⃗̇𝜔𝑘𝑘 are the kth components of the

translational and rotational velocities of spheres and αd - the positive numerical damping 

coefficient smaller than 1 [53] (sgn(•) returns the sign of the kth component of the translational 

and rotational velocity).

Fig.1: Two spheres in contact with forces and momentum acting on them (𝐹⃗𝐹𝑛𝑛 - normal contact 

force, 𝐹⃗𝐹𝑠𝑠 – tangential contact force, 𝑀⃗⃗⃗𝑀𝑟𝑟 - contact moment force and 𝑛⃗⃗𝑛 - contact normal vector)

[48]

 and 

6

𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 = 𝑀⃗⃗⃗𝑀𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔⃗⃗⃗̇𝜔𝑘𝑘)|𝑀⃗⃗⃗𝑀𝑘𝑘|,          (6)

where 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 - the damped contact force and moment, 𝐹⃗𝐹𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑘𝑘 - the kth components

of the residual contact force and contact moment vector, 𝜈⃗𝜈𝑘𝑘 and 𝜔⃗⃗⃗̇𝜔𝑘𝑘 are the kth components of the

translational and rotational velocities of spheres and αd - the positive numerical damping 

coefficient smaller than 1 [53] (sgn(•) returns the sign of the kth component of the translational 

and rotational velocity).

Fig.1: Two spheres in contact with forces and momentum acting on them (𝐹⃗𝐹𝑛𝑛 - normal contact 

force, 𝐹⃗𝐹𝑠𝑠 – tangential contact force, 𝑀⃗⃗⃗𝑀𝑟𝑟 - contact moment force and 𝑛⃗⃗𝑛 - contact normal vector)

[48]

 - the damped contact force and 
moment, 

6

𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 = 𝑀⃗⃗⃗𝑀𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔⃗⃗⃗̇𝜔𝑘𝑘)|𝑀⃗⃗⃗𝑀𝑘𝑘|,          (6)

where 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 - the damped contact force and moment, 𝐹⃗𝐹𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑘𝑘 - the kth components

of the residual contact force and contact moment vector, 𝜈⃗𝜈𝑘𝑘 and 𝜔⃗⃗⃗̇𝜔𝑘𝑘 are the kth components of the

translational and rotational velocities of spheres and αd - the positive numerical damping 

coefficient smaller than 1 [53] (sgn(•) returns the sign of the kth component of the translational 

and rotational velocity).

Fig.1: Two spheres in contact with forces and momentum acting on them (𝐹⃗𝐹𝑛𝑛 - normal contact 

force, 𝐹⃗𝐹𝑠𝑠 – tangential contact force, 𝑀⃗⃗⃗𝑀𝑟𝑟 - contact moment force and 𝑛⃗⃗𝑛 - contact normal vector)

[48]

 and 
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𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 = 𝑀⃗⃗⃗𝑀𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔⃗⃗⃗̇𝜔𝑘𝑘)|𝑀⃗⃗⃗𝑀𝑘𝑘|,          (6)

where 𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 - the damped contact force and moment, 𝐹⃗𝐹𝑘𝑘 and 𝑀⃗⃗⃗𝑀𝑘𝑘 - the kth components

of the residual contact force and contact moment vector, 𝜈⃗𝜈𝑘𝑘 and 𝜔⃗⃗⃗̇𝜔𝑘𝑘 are the kth components of the

translational and rotational velocities of spheres and αd - the positive numerical damping 

coefficient smaller than 1 [53] (sgn(•) returns the sign of the kth component of the translational 

and rotational velocity).

Fig.1: Two spheres in contact with forces and momentum acting on them (𝐹⃗𝐹𝑛𝑛 - normal contact 

force, 𝐹⃗𝐹𝑠𝑠 – tangential contact force, 𝑀⃗⃗⃗𝑀𝑟𝑟 - contact moment force and 𝑛⃗⃗𝑛 - contact normal vector)

[48]

 - the kth
 components of the residual 

contact force and contact moment vector, 

6

𝐹⃗𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 − 𝛼𝛼𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜈⃗𝜈𝑘𝑘)|𝐹⃗𝐹𝑘𝑘|       and       𝑀⃗⃗⃗𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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 are 
the kth

 components of the translational  and  rotational  
velocities  of  spheres  and  αd   -  the  positive  numerical  
damping coefficient smaller than 1 [53] (sgn(•) returns 
the sign of the kth component of the translational and 
rotational velocity).

3  Calibration
The typical calibration procedure in geotechnical 
problems is based on the triaxial tests. In this article, 
the experimental data [1] were used to calibrate and 
validate the numerical DEM model. In the laboratory 
test, the so-called Karlsruhe cohesionless sand was 
used (mean grain diameter d50 = 0.5 mm). In order to 
determine material micro-parameters, a 10-cm-wide 
cubical specimen composed of 8000 spheres with contact 

moments was created. To shorten the computation time, 
spherical particles used in numerical simulations were 
scaled 10 times (d50 = 5.0 mm) in comparison to laboratory 
experiments (diameter varied between d = 2.5 and 7.5 
mm). Such an approach was found to have negligible 
effect on the global response of the sample [54] since no 
localization appeared (tests were performed with the rigid 
walls). The mass density of spheres was equal to ρ = 2550 
kg/m3. To prepare the specimen, spheres were randomly 
distributed inside an assemble of six smooth, rigid walls 

Figure 1: Two spheres in contact with forces and momentum acting 
on them (F⃗ n - normal contact force, F⃗ s – tangential contact force,  
M⃗n - contact moment force and n⃗ - contact normal vector) [48].

Figure 2: Mechanical response of (a) tangential (b) normal and (c) 
rolling contact model laws [45].
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(Fig. 3). After the particles were packed into the box, the 
isotropic compression started. During compression, the 
inter-particle friction angle μ varied between μ=0o and 
18o in order to obtain the assumed initial void ratio of 
the specimen. For dense specimens, the initial friction 
angle was equal to 0° (the grains were more free to move) 
during initial compression. For medium-dense and loose 
specimens, the initial friction angle was equal to μ = 9o 

and 18o, respectively. The grains were more blocked, thus 
more micro-voids appeared. When 90% of the initial 
stresses were obtained, the friction angle changed into 
the final value. After the desired density was reached and 
the kinetic energy of the assemblage was negligible, the 
sample was considered as prepared. During the triaxial 
test, bottom and top walls started to move vertically 
towards the centre of the sample, causing an increase of 
the σ1 stress while σ2 and σ3 remained constant (side walls 
were able to move horizontally). Tests were performed 
under quasi-static conditions (the inertial number I was 
kept below 10e-4) and under gravity-free conditions. 
Tests were continued until the vertical strain ε1 = 0.3 was 
reached. The damping coefficient was equal to 0.08 and 
had no influence on the results [17].

For DEM calculations, five main parameters have 
to be established: Ec (modulus of elasticity of the grain 
contact), νc (normal/tangential stiffness ratio of the 
grain contact), μ (inter-particle friction angle), β (rolling 
stiffness coefficient) and η (limit rolling coefficient). The 
trial and error method of problem-solving was used. 
The material parameters were determined based on the 
macroscale global response of the specimen (no small-
scale characteristics were known). Numerical simulations 
for the triaxial test under different confinement pressure 
values σ0 = 50, 200 and 500 kPa and initial void ratio e0 

= 0.53 were compared with the experimental results (Fig. 
4). The stress–strain curve (Fig. 4A) as well as the volume 
changes curve (Fig. 4B) were in a good agreement with the 
experiments [1]. The calibrated parameters of DEM model 
based on the presented comparison are presented in Table 
1 (they are the same as in [54], where authors obtained 
similar results).

4  DEM simulations of triaxial tests
After the numerical model was calibrated, a series of 
triaxial tests were performed. Since no soft boundaries 
were introduced, no shear localization was obtained. The 
triaxial tests were calculated for calibration and validation 
purpose only. To decrease the computation time, the sand 

grains were again scaled 10 times. Regarding the real grain 
size, the specimen consists more than 1 million elements, 
which is beyond our capabilities. In this paragraph, 

Figure 3: Model set-up for numerical simulations of triaxial test.

A)

B)

Figure 4: Discrete simulations of homogeneous triaxial compression 
test compared to experiments by Wu [1]: A) vertical normal stress 
σ1 and B) volumetric strain εv versus vertical normal strain ε1 from a) 
numerical results and b) experimental results (e0 = 0.53, d50 = 5.0 
mm, σ0 = 50, 200 and 500 kPa).
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the effect of initial void ratio e0 and initial pressure σ0 

on the global response of the specimen is presented. In 
the beginning, the influence of the initial void ratio on 
the stress–strain curve σ1–ε1 (Fig. 5), volumetric strain 
evolution (Fig. 6) and void ratio development (Fig. 7) was 
investigated. The following graphs present the global 
response of the dense (e0 = 0.53), medium-dense (e0 = 0.60) 
and loose (e0 = 0.75) specimens under initial pressure σ0 = 
200 kPa. According to Fig. 5, the initial void ratio strongly 
affects the stress curve at the maximum strength, but has 
no influence on the stress values in a residual state. For 
the initially dense sample (Fig. 5a), the maximum stress 
value occurs at approximately ε1 = 0.05 and is equal to σ1 
= 1040 kPa. For the medium-dense sample (Fig. 5b), the 
peak is hardly visible and reaches the value at about 800 
kPa. In contrast, for the loose specimen (Fig. 5c), the peak 
is not observed (continuous hardening). In the residual 
state, stress values are initial void ratio independent and 
are equal to approximately σ1 = 750 kPa. The stiffness of 
the sample increases with the decrease of the initial void 
ratio (Fig. 5).

Similarly, the initial void ratio of the specimen has 
a significant influence on the volumetric strain. It can 
be observed that the increase in dilatancy was inverse 
to the initial void ratio (Fig. 6a, b) and the increase in 
contractancy was directly proportional to e0 (Fig. 6c). The 
evolution of the void ratio changes is presented in Fig. 
7. At a critical state, the specimens reached almost the 
same value, which was equal to about 0.7. Based on Figs 
5 and 7, it is possible to observe the relationship between 
current void ratio and current mean stresses (e/σm) in the 
sample. In all calculated triaxial tests, for vertical strain 
ε1 > 0.25, the ratio e/σm is constant, which is found to be in 
agreement with granular media theory.

Furthermore, the influence of the initial pressure 
σ0 on the global response of the specimen was 
investigated. A series of triaxial tests with the initially 
medium-dense specimen (e0 = 0.60) with various initial 
confining pressures equal σ0 = 50, 200 and 500 kPa were 

Table 1: Material micro-parameters for discrete simulations.

Material micro-parameters Value

Modulus of elasticity of grain contact Ec (MPa) 300

Normal/tangential stiffness ratio of grain contact vc (−) 0.3

Inter-particle friction angle μ (o) 18

Rolling stiffness coefficient β (−) 0.7

Moment limit coefficient η (−) 0.4

Figure 5: Vertical normal stress σ1 versus vertical normal strain ε1 

from discrete simulations of homogeneous triaxial compression test 
for different initial void ratios e0: a) e0 = 0.53, b) e0 = 0.60 and c) e0 = 
0.75 (σ0 = 200 kPa, d50 = 5.0 mm).

Figure 6: Volumetric strain εv versus vertical normal strain ε1 from 
discrete simulations of homogeneous triaxial compression test for 
different initial void ratios e0: a) e0 = 0.53, b) e0 = 0.60 and c) e0 = 
0.75 (σ0 = 200 kPa, d50 = 5.0 mm).

Figure 7: Void ratio e versus vertical normal strain ε1 from discrete 
simulations of homogeneous triaxial compression test for different 
initial void ratios e0: a) e0 = 0.53, b) e0 = 0.60 and c) e0 = 0.75 (σ0 = 
200 kPa, d50 = 5.0 mm).
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performed. Figure 8 demonstrates the influence of the 
initial confining pressure on the evolution of internal 
friction angle φw. Similar to the experimental results, 
the global internal friction angle peak increases with the 
decrease of the initial load. The peak angles occur from 
ε1 = 0.025 (Fig. 8a) to ε1 = 0.09 (Fig. 8c) and are equal to 
φw = 42.5o, 42.0o and 40.0o for σ0 = 50, 200 and 500 kPa, 
respectively (Fig. 8). As depicted in Fig. 9, the volumetric 
changes increase inversely to the confining load. At the 
beginning, all specimens exhibited hardening connected 
to contractancy, and after ε1 = 0.005–0.025, they started 
to dilatate, reaching residual state at the end of the test. 
The results presented in this paragraph, obtained from 
the simplified numerical triaxial test, show that the DEM 
numerical model is capable of reproducing macroscopic 
cohesionless sand behaviour. Curves obtained for the 
different initial void ratios, as well as for the various 
initial normal pressures were in a good agreement with 
experimental results [1].

5  3D DEM simulations of direct 
shear tests

5.1  Model set-up

The main aim of the research presented in this paper was 
to perform the 3D DEM numerical simulations of the direct 
shear test. The same material micro-parameters were 
used as in the triaxial tests (Table 1). However, in order 
to capture the localization characteristics (and grain-scale 
phenomena), the real size particles were used (d50 = 0.5 
mm). For each test, the sample composed of about 55,000 
spheres with radii varying from d = 0.25 to 0.75 mm was 
created. This is in contrast to many numerical studies, 
where not enough elements in height direction exist, 
and the localization can be affected by the boundaries. 
The numerical model of the direct shear apparatus (Fig. 
10), assembled from two independent parts, constituted 
the boundary conditions for the granular material. The 
lower boundary condition was fixed during the entire 
test, unlike the upper one, which was able to move in 
a horizontal and vertical direction. A gap, equal to the 
maximum particle diameter, was created between two 
boxes to prevent the spheres from locking. Both parts, 
composed of smooth, rigid walls, form the box of size 60 
× 25 × 5 mm3 (Fig. 10). At the beginning of each test, the 
particles were randomly packed into the sample. During 
the preparation, a constant, vertical load σ0 was applied to 
the top wall, until the assumed porosity of the specimen 

was obtained (the inter-particle friction µ varied between 
0o and 18o). After static equilibrium was reached, the final 
micro-parameters were used (Table 1) and the sample 
was prepared for the test. The top wall started to move 
horizontally (ux) with a constant velocity. All tests were 
performed under gravity and quasi-static conditions (the 
inertial number I was kept below 10e-4).

5.2  Macroscopic behaviour

Here, the sensitivity analysis performed in section 4 was 
repeated for the direct shear test. In the beginning, three 
tests with different initial void ratios were carried out. 
Similar to the triaxial tests, the void ratio was from e0 = 
0.53 to e0 = 0.75 under a constant pressure σ0 = 200 kPa. 

Figure 8: Internal friction angle φw versus vertical normal strain ε1 

from discrete simulations of homogeneous triaxial compression test 
for different initial confining stress: a) σ0 = 50 kPa, b) σ0 = 200 kPa 
and c) σ0 = 500 kPa (e0 = 0.60, d50 = 5.0 mm).

Figure 9: Volumetric strain εv versus vertical normal strain ε1 from 
discrete simulations of homogeneous triaxial compression test for 
different initial confining stress: a) σ0 = 50 kPa, b) σ0 = 200 kPa and 
c) σ0 = 500 kPa (e0 = 0.60, d50 = 5.0 mm).
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As presented in Fig. 11, the internal friction angle φw = 
atan(τx/σx) increased with a decrease of the initial void 
ratio. Global internal friction angle peak occurred only for 
dense and medium-dense samples at approximately ux = 
1.25 mm (Fig. 11a) and ux = 2.00 mm (Fig. 11b). For these 
tests, the residual state angle φw = 33o was observed after ux 

= 5.5 mm. For the loose sample (Fig. 11c), the peak was not 
observed and the internal friction angle increased until 
it reached φw = 32o in the residual state. According to Fig. 
12, the dense and the medium-dense samples exhibited 
similar volumetric strains, increasing their volume during 
the test by approximately 3%. A lower initial void ratio 
increased specimens’ dilatation (Fig. 12a, b) and a higher 
initial void ratio increased sample contractation (Fig. 12c).

A clear, horizontal shear zone appeared at mid-height 
of the dense and the medium-dense samples (Figs 13a, b 
and 14a, b). The height of the shear zone, based on the 
sphere rotations, was uniform along both specimens and 
was approximately equal to ts = 20 × d50. The direction 
of the particle rotations, in the localization, was in the 
majority clockwise, in accordance with the shear direction 
(Fig. 13a, b). For the initially loose sample (Figs 13c and 
14c), the pronounced, horizontal shear zone did not occur. 
During the test, loose particles in the upper box started 
to compact near it, rather than move as a homogeneous 
material in accordance with the shear direction (Fig. 13c). 
The passive and active earth pressure states were observed 
at the left and right sides of the specimen, respectively.

The influence of the initial vertical load σ0 on 
macroscopic samples’ behaviour is presented in the next 
two graphs. The internal friction angle evolution properly 
corresponded to the experimental results [1] (Fig. 15). The 
stiffness of the sample increased with the decrease of the 
vertical load applied to the top wall. Similarly, the global 
internal peak angle increased and was equal to φw = 45o, 43o 
and 41o for σ0 = 50, 200 and 500 kPa, respectively (Fig. 15). 
The granular material strength in the residual state was 
not pressure dependent and was approximately equal to 
φw = 33o for all three tests. The evolution of the volumetric 
strain (Fig. 16) was similar for all samples. The dilatancy 
of the granular material increased in inverse proportion 
to the vertical load. The void ratio changes were also 
affected by the initial load magnitude and exhibited a 
similar trend as for the volumetric strain curves (Fig. 17). 
The greatest contractation was observed for the σ0 = 500 
kPa and the largest dilatancy for σ0 = 50 kPa. Independent 
of the vertical load, a pronounced horizontal localization 
was formed at the mid-height of the samples (Fig. 18). The 
shear zone thickness (based on the grain rotation) was 
approximately equal to ts = 20 × d50 in all cases.

Figure 10: Model set-up for numerical simulations of direct shear test.

Figure 11: Internal friction angle φw versus horizontal displacement 
ux from discrete simulations of direct shear test for different initial 
void ratios: a) e0 = 0.53, b) e0 = 0.60 and c) e0 = 0.75 (σ0 = 200 kPa, 
d50 = 0.5 mm).

Figure 12: Volumetric strain εv versus horizontal displacement ux 

from discrete simulations of direct shear test for different initial void 
ratios: a) e0 = 0.53, b) e0 = 0.60 and c) e0 = 0.75 (σ0 = 200 kPa, d50 = 
0.5 mm).
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6  Grain-level phenomena inside 
the shear zone
In this section, the main focus is on the behaviour of the 
granular material inside the localization during the direct 
shear test. Therefore, the specimen with pronounced 
horizontal shear zone was taken under study (e0 = 0.60, 
σ0 = 200 kPa, d50 = 0.5 mm) (Fig. 18b). The specimen 
was chosen as the most representative; however, the 
phenomena described below appear in all specimens.

This kind of test was chosen due to the simple, linear 
and well-known localization – in other tests (although it 
is in our future goals), the behaviour can be disturbed by 
more complex stress fields.

During the test, a series of particle behaviour and 
characteristics, like particle displacements, particle 
rotations, void ratio, coordination number, forces on 
spheres and moments on spheres, were calculated in 
horizontal layers of height 5 × d50 moved vertically by d50. 

The layers overlapped each other to obtain better resolution 
(more points in vertical cross section). The mean value in 
each layer was calculated since a single grain behaviour 
exhibited strong fluctuations and the chaotic results were 
difficult to interpret. However, the height of the strips 
equal to just 5 × d50 allowed not to lose the discrete nature 

a)

b)

c)

Figure 13: Front view of the specimen at the final state for different 
initial void ratios: a) e0 = 0.53, b) e0 = 0.60 and c) e0 = 0.75 (σ0 = 
200 kPa, d50 = 0.5 mm) (the dark/light grey stripes were perfectly 
vertical at the beginning of the tests).

a)

b)

c)

Fig.14: Distribution of sphere rotations at the final state of the test for different initial void Figure 14: Distribution of sphere rotations at the final state of the 
test for different initial void ratios: a) e0 = 0.53, b) e0 = 0.60 and 
c) e0 = 0.75 (σ0 = 200 kPa, d50 = 0.5 mm) (red colour – clockwise 
rotations, blue colour – anti-clockwise rotations) (colour online)

Figure 15: Internal friction angle φw versus horizontal displacement 
ux from discrete simulations of direct shear test for different vertical 
load: a) σ0 = 50 kPa, b) σ0 = 200 kPa and c) σ0 = 500 kPa (e0 = 0.60, 
d50 = 0.5 mm).
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of the specimen. These material properties were computed 
every ux = 0.25 mm in the pre-peak phase. Moreover, the 
grain fluctuations of displacements were plotted for every 
particle in the entire specimen.

In our research, depending on the case, we assumed 
three approaches to identify and predict the shear zone 
location. For particles’ characteristics which are neutral 
(approximately equal to 0) at the beginning of the test, 
e.g. particle displacements or moments on spheres, 
the localization is considered as detectable when the 
parameter reaches 5% of the final state value. In the 
displacement fluctuations graph and the force chains 
map, the shear zone was predicted visually. In other 
cases, where the investigated parameter along the 

specimen height is unequal to 0, e.g. void ratio or stresses, 
we assumed that the localization is pronounced when the 
parameter value in the shear zone is 5% higher than in the 
rest of the sample. Five percent of the increment between 
the initial and final values was used. The 5% criterion was 
used by Skarżyński et al. [55] to determine the width of 
localization. Error function (ERF), being a special function 
of a sigmoid shape, was applied there. However, 5% was 
chosen arbitrarily; it allows us to directly compare different 
parameters without catching some statistical fluctuations. 
In the beginning, the geometrical phenomena in the 
shear zone were taken under consideration. The particle 
displacements are presented in figures 19 and 20. The 
plots were obtained by calculating the difference vector 
(
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 denote position in i and initial 
steps, respectively). As it is shown in the graphs, the 
specimen behaves  like two  almost  continuous  blocks  
separated  by the  shear zone.  The  maximum horizontal 
displacement and maximum vertical displacement at the 
end of the test were equal to u’x = 9.6 mm (not shown on 
the plot) and u’y = 0.6 mm, respectively (Figs 19i and 20i). 
Therefore, the localization can be established at ux = 0.75 

Figure 16: Volumetric strain εv versus horizontal displacement ux 

from discrete simulations of direct shear test for different vertical 
load: a) σ0 = 50 kPa, b) σ0 = 200 kPa and c) σ0 = 500 kPa (e0 = 0.60, 
d50 = 0.5 mm).

Figure 17: Void ratio e0 versus horizontal displacement ux from 
discrete simulations of direct shear test for different vertical load: 
a) σ0 = 50 kPa, b) σ0 = 200 kPa and c) σ0 = 500 kPa (e0 = 0.60, d50 = 
0.5 mm).

a)

b)

c)

Fig.18: Distribution of sphere rotations at the final state of the test for different vertical load: 
Figure 18: Distribution of sphere rotations at the final state of the 
test for different vertical load: a) σ0 = 50 kPa, b) σ0 = 200 kPa and 
c) σ0 = 500 kPa (e0 = 0.60, d50 = 0.5 mm) (red colour – clockwise 
rotations, blue colour – anti-clockwise rotations) (colour online).
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(0.75) mm for u’x (u’y). It shows the visible curve in their 
shapes (and the displacement is higher than 5% of the 
final value, which was the presumed limit). The thickness 
is difficult to determine; however, it is about 20 × d50 (38 × 
d50 – 18 × d50) for both cases.

The evolution of sphere rotations in the pre-peak 
state of the test is demonstrated in Fig. 21. The curves 
correspond to a mean particle rotation angle computed in 
layers after certain shear displacement. During the test, 
the incremental growth of particle rotations was observed 
in localization. Outside the shear zone, the particles 

were nearly motionless. Clear shear zone initiation was 
observed at ux = 1.50 mm (5% of the final rotation was 
reached). From then on, the localization thickness was 
similar to the one in the final stage of the test and was 
equal to ts = 19 × d50. The maximum rotation angle at ux = 
10.00 mm was equal to ω = 0.52 rad.

The void ratio in the central vertical cross section 
of the specimen was also analysed as the localization 
predictor. As presented in Fig. 22, the sample void ratio, 
along the normalized height, at the beginning of the test 
was approximately equal to e0 = 0.60. Along with shearing, 
in the mid-height of the sample, gradual growth of void 
ratio is observed. A pronounced localization occurs at 
approximately ux = 1.50 mm (more than 5% of the final 
void ratio value) and is about ts = 25 × d50 thick (Fig. 22f).

The evolution of the coordination number in the shear 
box is demonstrated in Fig. 23. The shear zone location 
could be predicted after ux = 0.75 mm (Fig. 23d), although 
the localization thickness could not be determined, since 
the changes during the test were visible along the entire 
specimen height (even close to the edges). In contrast to 
sphere rotation or even void ratio, the coordination number 
diagram has no clearly defined boundaries of the localization. 
Starting from the bottom of the sample, the coordination 
number almost linearly decreased, reaching the minimum 
in the middle of the sample, and similarly returned to the 
initial value at the top of the box. The looseness appeared in 
the entire specimen; however, most significant changes were 
found in the middle of the shear zone. This is in contrast with 
the common approaches, where coordination numbers are 
directly correlated with porosity.

Figure 19: Distribution of horizontal sphere displacement u’x across 
the normalized specimen height h/d50 at the specimen centre for: a) 
ux = 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) 
ux = 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) 
ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) (dark vertical 
line demonstrates 5% limit).

Figure 20: Distribution of vertical sphere displacement u’y across the 
normalized specimen height h/d50 at the specimen centre for: a) ux 
= 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) ux 
= 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) 
ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) (dark vertical 
line demonstrates 5% limit).

Figure 21: Distribution of sphere rotations ω across the normalized 
specimen height h/d50 at the specimen centre for: a) ux = 0.25 mm, 
b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) ux = 1.25 mm, f) 
ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) ux = 10.00 mm 
(e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) (negative value corresponds 
to the clockwise rotation; dark vertical line demonstrates 5% limit).
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Figure 24 presents the evolution of the displacement 
fluctuations in the specimen in the pre-peak phase. 
The graphs were obtained by drawing the displacement 
vector reduced by an average displacement (𝑢⃗i − 𝑢⃗i,avg) at 
each state for both horizontal and vertical directions (𝑢⃗i  
indicates particle displacement after, e.g. ux = 1.00 mm 
and 𝑢⃗i,avg = 𝑢𝑢𝑢𝑢�⃗ 𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑛𝑛𝑛𝑛
� 𝑢𝑢𝑢𝑢�⃗ 𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖
 𝑢⃗i , is the average displacement at this step). 

The fluctuation fields give a whole new perspective on the 
prediction of the localization. The straight, horizontal 
shear zone did not occur from the beginning of the test. 
According to Fig. 24a, particles movement initially imposed 

the s-shaped shear zone. As the shearing proceeded, the 
shape of the localization gradually flattened (Fig. 24e) 
to almost a horizontal form. A noticeable shear zone in 
nearly final shape occurred at ux = 1.75 mm (Fig. 24h).  
The localization was about ts = 6 × d50 thick, so it is 
much thinner than observed by other parameters. The 
fluctuation evolution (shape of localization) has to be 
studied in detail, and it is the aim of our future work. The 
phenomenon of the creation of localization (where and 
how it starts and develops) is an important task to solve.

Besides the geometrical phenomena, the evolution 
of the forces and moments was analysed in the pre-peak 
phase.

In Fig. 25, the evolution of the normal force in the 
entire specimen is presented. The red lines denote forces 
above the mean values (the line thickness corresponds 
to the normal force value). It can be seen that firstly, the 
main forces appear at the top-left and bottom-right parts 
of the specimen. The granular media is mobilized just in 
those parts (Fig. 25a–d). The diagonal forces are visible for 
ux > 1.25 mm (Fig. 25d–i). At the last step (Fig. 25i), the lack 
of forces is visible in the middle part (related to higher 
void ratio). The force chain shape also suggests that the 
shear zone is not a straight line in the mid-height of the 
specimen from the beginning. It is in agreement with the 
fluctuations of the displacement maps. The localization 
path and thickness cannot be established from normal 
force maps. A more detailed study should be conducted 
(i.e. results comparison for different cross sections in the 
width), which is our future plan.

At first, the mean values of the force acting on 
particles, in each layer, were calculated along the height 
of the specimen. In Fig. 26, the horizontal forces, averaged 
in cells, are presented. Along with shearing, the growth of 
the horizontal forces outside the shear zone is observed. 
A transparent recess in fx evolution (more than 5%) is 
observed at ux = 0.75 mm (Fig. 26c). Contrary to this, the 
distribution of the vertical forces fy was not a proper 
criterion to predict the shear zone location (Fig. 27). 
The curves almost did not change during the test. It was 
expected since the vertical pressure was kept constant 
during the entire test. It was impossible to determine the 
thickness of the shear zone in both cases (for fx, the regress 
in forces was present in almost the entire height of the 
specimen, without measurable boundaries).

Moreover, the maximal normal forces, in each layer, in 
both directions were studied as the localization predictors 
(Figs 28 and 29). In both cases, the shear zone future 
location could be found slightly after the beginning of the 
test (ux = 0.75–1.00 mm) (Figs 28d and 29c); however, the 
shear zone localization thickness was also not clear for 

Figure 22: Distribution of void ratio e across the normalized 
specimen height h/d50 at the specimen centre for: a) ux = 0.25 
mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) ux = 1.25 
mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) ux = 
10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) (dark vertical line 
demonstrates 5% limit).

Figure 23: Distribution of coordination number n across the 
normalized specimen height h/d50 at the specimen centre for: a) ux 
= 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) ux 
= 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) 
ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) (dark vertical 
line demonstrates 5% limit).
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a) 

b) 

c) 

d) 

e) 

Figure 24: Evolution of displacements fluctuations (𝑢⃗i − 𝑢⃗i,avg) in the entire specimen for: a) ux = 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, 
d) ux = 1.00 mm, e) ux = 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 
mm) (the arrows are multiple by 10 due to readability; red lines show the estimated localization shape).

f)

g)

h)

i)

Fig.24: Evolution of displacements fluctuations (𝑢⃗⃗𝑢𝑖𝑖 − 𝑢⃗⃗𝑢𝑎𝑎𝑎𝑎𝑎𝑎) in the entire specimen for: 

a) ux=0.25 mm, b) ux=0.50 mm, c) ux=0.75 mm, d) ux=1.00 mm, e) ux=1.25 mm, f) ux=1.50 mm,

g) ux=1.75 mm, h) ux=2.00 mm and i) ux=10.00 mm (e0=0.60, σ0=200 kPa, d50=0.5 mm) (the

arrows are multiple by 10 due to readability) (red lines shows the estimated localization shape)
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a)
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c)
    

d)

e)

f)

g)

h)
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e)

f)

g)
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Figure 25: Force chain distribution in the entire specimen for: a) ux = 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) ux = 1.25 
mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) (red colour corresponds 
to the force chain above the mean value) (colour online)

32

i)

Fig.25: Force chains distribution in the entire specimen for: a) ux=0.25 mm, b) ux=0.50 mm, c)

ux=0.75 mm, d) ux=1.00 mm, e) ux=1.25 mm, f) ux=1.50 mm, g) ux=1.75 mm, h) ux=2.00 mm 
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fx. The localization zone for fy could be established as 25 
× d50. The force (fx) curves had a similar trajectory as the 
coordination number (Fig. 23), where the values changed 
in the entire sample. It proves that the coordination  
number is correlated with internal forces – less contacts 
have to carry external constant pressure, so they have 
higher values.

The last characteristics, investigated as a predictor, 
were the resultant moment acting on spheres (Fig. 30). 
These were calculated from Eqns 4 and 5. Moments 

were correlated with a vertical gradient of the grain’s 
rotation (negative and positive values corresponded to 
decrease and increase of the rotation, respectively; thus, 
0 corresponded to the highest rotation). In this case, the 
shear zone is located in the region where the moments 
function changes the sign from positive to negative 
(moment is equal 0). During shearing, the growth of two 
bulges on the curve is observed – one of the negative 
sign below and the other of the positive sign above the 
specimen mid-height. Therefore, very early prediction of 

Figure 26: Distribution of the normal forces fx acting on spheres 
across the normalized specimen height h/d50 at the specimen centre 
for: a) ux = 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 
mm, e) ux = 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 
mm and i) ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) 
(dark vertical line demonstrates 5% limit).

Figure 27: Distribution of the normal forces fy acting on spheres 
across the normalized specimen height h/d50 at the specimen  
centre for: a) ux = 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d)  
ux = 1.00 mm, e) ux = 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h)  
ux = 2.00 mm and i) ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa,  
d50 = 0.5 mm).

Figure 28: Distribution of the maximal normal forces fx,max acting 
on spheres, in the averaging cell, across the normalized specimen 
height h/d50 at the specimen centre for: a) ux = 0.25 mm, b) ux = 0.50 
mm, c) ux = 0.75 mm, d) ux = 1.00 mm, e) ux = 1.25 mm, f) ux = 1.50 
mm, g) ux = 1.75 mm, h) ux = 2.00 mm and i) ux = 10.00 mm (e0 = 
0.60, σ0 = 200 kPa, d50 = 0.5 mm) (dark vertical line demonstrates 
5% limit).

Figure 29: Distribution of the maximal normal forces fy,max acting on 
spheres, in the averaging cell, across the normalized specimen height 
h/d50 at the specimen centre for: a) ux = 0.25 mm, b) ux = 0.50 mm, c) 
ux = 0.75 mm, d) ux = 1.00 mm, e) ux = 1.25 mm, f) ux = 1.50 mm, g) ux 
= 1.75 mm, h) ux = 2.00 mm and i) ux = 10.00 mm (e0 = 0.60, σ0 = 200 
kPa, d50 = 0.5 mm) (dark vertical line demonstrates 5% limit).
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the shear zone location (ux = 0.50 mm) is possible (Fig. 
30b). Localization thickness can be determined and it is 
equal to about 30 × d50.

To sum up, early shear zone location predictors are 
shown in Table 2.

7  Conclusions
The DEM model can realistically reproduce experimental 
macroscopic data. The parameters’ influence was in 
agreement with the laboratory tests. It can show detailed 

pattern shear zones, since the grain structure of granular 
media is taken into account. With increasing computer 
power, more and more complex problems can be studied. 
In the future, the simulations can replace expensive 
laboratory tests. However, even nowadays, the discrete 
approach allows to study in depth the phenomena inside 
the localization zone. Especially, 3D calculations simulate 
realistically the behaviour of the granular soil.

The following main conclusions may be listed from 
DEM simulations of patterns of shear zones:

	– With geotechnical tests, the macroscopic response 
(stresses, internal friction angle or volumetric 
changes) can be calculated and has been found to be 
in a good agreement with the experimental data.

	– Many of the phenomena inside the localization zone 
can be observed and carefully studied. This is a 
huge advantage in contrast to continuum models or 
laboratory tests.

	– The early predictors for structure safety can be found. 
The first signals, which showed the formulation of 
shear zones in direct shear tests, were: moments and 
forces (maximum or mean). They appeared even at ux 

= 0.5 mm (far before the peak, which was at about ux 

= 2 mm). Since 5% rule was applied, the changes in 
geometrical behaviour were found a bit later in ux = 
0.75 mm (horizontal displacements) or uy = 1.0 mm 
(vertical displacements). However, some predictors 
may occur earlier, varying on the assumed limit 
criterion. The typical signs of the localization, such 
as the void ratio (dilatation) or sphere rotations, were 
found as quite late indicators of shear localization 
(above ux = 1.50 mm) (just before the peak).

	– The force (stress) distributions cannot always be used 
for measuring shear zone thickness. For moments and 
maximum vertical force, the thickness of localized 
zone is a bit larger than for parameters based on 
geometrical phenomena (like displacement, rotation 
or changes in the void ratio). Usually, it is equal to 
about 20 × d50 (19–25 × d50) or 25–30 × d50 for geometrical 
or forces criteria, respectively. The wider localization 
found in forces criteria than in geometrical ones is in 
agreement with [56], where DEM and laboratory tests 
were studied. The sum of horizontal forces can only 
be used as predictors that shear appears inside the 
specimen, but not to find its future location (and size).

	– Future studies should be continued on fluctuations 
in displacement. In spite, that they show the future 
localization zone rather late (ux=1.75 mm) and do not 
show good thickness of it, they present interesting 
s-shape at the beginning of the test. This shape may 
explain the complex behaviour of sheared granular 

Figure 30: Distribution of the resultant moment m acting on spheres 
across the normalized specimen height h/d50 at the specimen centre 
for: a) ux = 0.25 mm, b) ux = 0.50 mm, c) ux = 0.75 mm, d) ux = 1.00 
mm, e) ux = 1.25 mm, f) ux = 1.50 mm, g) ux = 1.75 mm, h) ux = 2.00 
mm and i) ux = 10.00 mm (e0 = 0.60, σ0 = 200 kPa, d50 = 0.5 mm) 
(dark vertical line demonstrates 5% limit).

Table 2: Early predictor summation.

Predictor ux (mm) ts (mm)

Horizontal displacement ux 0.75 20 × d50

Vertical displacement uy 0.75 20 × d50

Rotations ω 1.50 19 × d50

Void ratio e 2.00 25 × d50

Coordination number n 0.75 -

Displacement fluctuations 1.75 6 × d50

Normal force fx 0.75 -

Normal force fy - -

Maximal force fx,max 1.00 -

Maximal force fy,max 0.75 25 × d50

Moments m 0.50 30 × d50
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media. The parameters presented in this work should 
be studied carefully close to the boundary conditions 
(left and right sides of the box) where s-shape is 
presented.

This paper is the first stage of our research. In future, more 
cross sections (close to boundaries) will be investigated 
due to our understanding of the localization shape and 
formulation. The spheres will be replaced by clumps 
(with more realistic grain’s shape) to catch all possible 
phenomena. The cohesive material can be also studied 
and compared with cohesionless sand results. Finally, 
different tests (e.g. biaxial) will be studied, where location 
of the shear zone is not known from the beginning of the 
test and bifurcation can have a place.
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