
Studia Geotechnica et Mechanica, 2019; 41(1): 13–20

Research Article Open Access

Shalu Choudhary*, Sunil

Global Stability For Double-Diffusive Convection In 
A Couple-Stress Fluid Saturating A Porous Medium
https://doi.org/10.2478/sgem-2018-0044
received July 6, 2018; accepted December 3, 2018.

Abstract: We show that the global non-linear stability 
threshold for convection in a double-diffusive couple-
stress fluid saturating a porous medium is exactly the 
same as the linear instability boundary. The optimal result 
is important because it shows that linearized instability 
theory has captured completely the physics of the onset 
of convection. It is also found that couple-stress fluid 
saturating a porous medium is thermally more stable than 
the ordinary viscous fluid, and the effects of couple-stress 
parameter ( )F , solute gradient ( )fS  and Brinkman 
number ( )aD  on the onset of convection is also analyzed.

Keywords: couple-stress parameter, solute gradient, 
Brinkman number.

1  Introduction
Conventional hydrodynamic stability theory is mainly 
concerned with the determination of critical values of 
Rayleigh number, demarcating a region of stability from 
that of instability. The potentials of linear theory of stability 
and the energy method are complementary to each other 
in the sense that the linear theory gives conditions under 
which the hydrodynamic system is definitely unstable. 
It cannot with certainty conclude stability. On the other 
hand, the energy theory gives conditions under which the 
hydrodynamic system  is definitely stable. It cannot with 
certainty conclude instability. Suffering from its basic 
assumptions, the validity of the linearized stability theory 
becomes questionable.

Hence, the non-linear approach becomes inevitable 
to investigate the effect of finite disturbances. The 

formulation and derivation of the basic equation of a 
layer of fluid heated and soluted from below in the porous 
medium using Boussinesq approximation has been 
given in a treatise by Joseph [1]. When a fluid flows in 
an isotropic and homogenous porous medium, the gross 
effect is represented by the Darcy’s law. The study of a 
layer of fluid heated and soluted from below in the porous 
media is motivated both theoretically and by its practical 
application in engineering. Among the application in 
engineering disciplines, one can find the food process 
industry, chemical process industry and solidification 
and centrifugal casting of metals. The oldest method 
of non-linear stability analysis that can deal with finite 
disturbances is the energy method, originated by Orr 
[2], and its recent revival has been inspired by the work 
of Serrin [3] and Joseph [1, 4, 5]. Rapid improvements 
of the classical energy theory have been made in recent 
years [6]. The approach adopted in the present article 
is by the application of the energy method, pioneered 
and developed in its modern use way by Straughan [7, 
8]. Straughan [9] developed a sharp non-linear energy 
stability analysis for the saturated porous medium, and 
the results obtained are the best possible showing that 
subcritical instabilities are not possible. By selecting 
the optimal, it has been possible to sharpen the stability 
bound in many physical problems (Straughan [8]). A non-
linear stability analysis of fluids by using generalized 
energy stability theory has been considered by many 
authors[10-15]).

There are a lot of analyses of performance and 
experiment in the couple-stress lubricant. Stokes 
[16] proposed a simplest theory called the Stokes 
microcontinum theory, which could be used for the 
simulation of couple-stress fluid. One of the applications 
of couple-stress fluid is its use in the study of the 
mechanism of lubrication of synovial joints, which has 
become the object of scientific research. A human joint is 
a dynamically loaded bearing that has auricular cartilage 
as the bearing and synovial fluid as the lubricant. When 
a fluid film is generated, squeeze-film action is capable of 
providing considerable protection to the cartilage surface. 
Ramanaian [17] applied the couple-stress fluid model 
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to analyze the long slider bearing. Sharma and Thakur 
[18] and Sharma et al. [19] have studied the problems of 
couple-stress fluid heated and soluted from below in the 
hydromagnetic porous medium and rotation separately. 
Recently, Sunil and Mahajan [20-23] studied the non-linear 
stability analysis for thermal convection in a magnetized 
ferrofluid heated from below saturating a porous medium. 
Sunil et al. [24, 25] studied the non-linear stability analysis 
for thermal convection in a couple-stress fluid heated 
from below saturating a porous medium. Hsu et al. [26] 
studied the combined effects of couple stress and surface 
roughness using journal bearings lubricated with the non-
Newtonian fluid. It was found that the combined effects 
of couple stress and surface roughness can improve the 
load carrying capacity and decrease the attitude angle 
and friction parameter. Recently, Lahmar [27] also found 
that the lubricants with couple-stress fluid would increase 
the load carrying capacity and stability and decrease the 
friction factor and the attitude angle.

The purpose of the present article was to study the 
non-linear stability analysis of couple-stress fluid heated 
and soluted from below, saturating a porous medium of 
high permeability [28]. The really interesting situation 
from a mathematical viewpoint arises when the layer is 
simultaneously heated and salted from below. In the 
standard Bènard problem, the instability is driven by a 
density difference caused by a temperature difference 
between the upper and lower surfaces bounding the 
fluid. If, additionally, the fluid layer has salt dissolved 
in it, then there are potentially two destabilizing sources 
for the density difference, the temperature field and the 
salt field. When there are two effects such as this, the 
phenomenon of convection that arises is called double-
diffusive convection. The driving force for many studies 
in double-diffusive or multicomponent convection is 
largely physical applications. The double-diffusive 
convection problems have been studied by many authors 
[13-14, 29-39]. In porous media, an alternative to Darcy’s 
equation is what is known as Brinkman’s equation [28]. 
It is believed that for the flow of a high-porosity porous 
medium, the Brinkman equation removes some of the 
deficiencies and gives preferable result. In the work of Qin 
and Kaloni [40], it was remarked that for high porosity 
materials and when boundary layer effects need to be 
taken into account, the Brinkman model is superior to 
Darcy’s model. Here, we establish the optimal result, 
that is the linear instability and non-linear stability of 
Rayleigh numbers are the same, i.e. .≡f efR R  We also 
find that the critical value of thermal Rayleigh number for 
the couple-stress fluid is higher than the critical value of 
thermal Rayleigh number for the ordinary fluid; hence, 

the couple-stress fluid is thermally more stable than the 
ordinary fluid. This problem, to the best of my knowledge, 
has not been investigated yet.

2  Mathematical Formulation Of The 
Problem
Here, we consider an infinite, horizontal layer of thickness 
‘ d ’ of incompressible thin couple-stress fluid with 
constant viscosity that is heated and soluted from below, 
saturating an isotropic homogeneous porous medium of 
porosityε  and medium permeability 1K .     

The fluid is assumed to occupy the layer ,   
2 2

 ∈ − 
 

d dz  
with gravity field ( )0,0,= −g g  pervading the system in 
the negative z-direction.

The equations governing the flow of an incompressible 
couple-stress fluid (utilizing the Boussinesq 
approximation) are given as follows [13, 24, 41]:

Mass balance:

0=⋅∇ q . (1)

Momentum balance:

( ) ( ) ( )2 20
0

1

11
 ∂  ′ ′= −∇ + − − + − − − ∇ + ∇   ∂ 

q g q qa ap T T C C
t K

ρ ρ α α µ µ µ
ε

.       (2)

Temperature equation:

( ) ( )0 0 0 0 . ( )∂
+ ⋅∇ = ∇ ∇

∂
qm f

TC C T k T
t

ρ ρ . (3)

Solute equation:

( ) ( )0 0 0 0 . ( )∂ ′+ ⋅∇ = ∇ ∇
∂

qm f
CC C C k C
t

ρ ρ . (4)

Here ρ , 0ρ , q , g , t , p , µ , ′µ , µ , κ , ′κ , 1K , 
ε , ,α α′  and 0C  are the fluid density, reference 
density, filter velocity, acceleration due to gravity, 
time, pressure, coefficient of viscosity, coefficient of 

Figure 1: Geometrical configuration of the problem.
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visco-elasticity, effective viscosity, thermal diffusivity, 
solute diffusivity, permeability of porous medium, 
porosity, thermal expansion coefficient, concentration 
expansion coefficient analogous to the thermal expansion 
coefficient and specific heat at constant pressure, 
respectively. The subscripts ‘m’ and ‘f’ refer to the fluid–
solid mixture and the fluid, respectively. aT  and aC  are 
the average temperature and solute concentration given 
by ( )

2
+

= L U
a

T T
T and

 

( )
2
+

= L U
a

C C
C  respectively, where LT ,  

UT  and ,L UC C  are the constant average temperatures 
and solute concentrations of the lower and upper surfaces 
of the layer, respectively, and  

= 
 

dT
dz

β and  ′ = 
 

dC
dz

β  are 
uniform temperature and solute gradients, respectively.

The basic state is assumed to be the quiescent state 
and is given by

(0,0,0)= =q q b , ( )= bp p z ,
( )0( ) (1 ),′ ′= = + − = = − +b b az z z T T z z Tρ ρ ρ α β α β β ,

( ) ′= = − +b aC C z z Cβ ,
 

,− −′= =L U L UT T C C
d d

β β , (5)

where the subscript ' 'b  denotes the basic state.
We shall analyze the stability of the basic state by 

introducing the following perturbations:

( ) ( ), , ,′ ′ ′= + = + = +q = q + qb b b bp p z p T T zρ ρ ρ θ  and 
( )= +bC C z γ . (6)

The non-linear equations for the perturbations 
( , , ), , ,′ ′ ′=q u v w p ρ θ and γ , which represent 

perturbations in velocity q , pressure p, density ρ ,  
temperature T and concentration C , respectively, are 
given by

( ) 2 20
0

1 1

1ˆ′∂ ′ ′ ′ ′ ′ ′= −∇ + − − + ∇ + ∇
∂
q k q q qp g
t K K

ρ µρ αθ α γ µ µ
ε

, (7)

0′∇ ⋅ =q , (8)

2 ,∂ ′+ ⋅∇ = ∇ +
∂

qA w
t
θ θ κ θ β (9)

2 ,∂ ′ ′ ′+ ⋅∇ = ∇ +
∂

qA w
t
γ γ κ γ β (10)

where ( )
( ) ( )

0 0

0 0 0 0

,
′

′= =m

f f

C kA
C C

ρ
κ

ρ ρ
 and ( )0 0

=
f

k
C

κ
ρ .

The boundary conditions are

, 0, 0 at
2
dzθ γ′ = = = = ±q 0 , (11)

with , andθ γ′q  satisfying the plane tiling periodicity.

3  Non-Linear Stability Analysis
To investigate the non-linear stability analysis, the 
governing equations (7)–(10) in the non-dimensional 
form (dropping asterisk) can be written as

1/2
1/2 21 ˆ ˆ( )∂

= −∇ + − + + ∇ −
∂
q k q q k

a
a

Sp R F D
V t Le

θ γ , (12)

0∇⋅ =q , (13)

2 1/21 ,∂
+ ⋅∇ = ∇ +

∂
q

e

A S w
t L
γ γ γ (14)

2 1/21 ,∂
+ ⋅∇ = ∇ +

∂
q

e

A S w
t L
γ γ γ (15)

where the following non-dimensional quantities and 
parameters are introduced:

*
2
′=t t

d
κ , ′=*q qd

κ
, 

1/2
* ′=

R
d

θ θ
β

, * 1 ′=
Kp p
µκ

, 

* 1
=z z

d , =


rV µ
µ

, 
2

1

=a
dV

K
εν
κ

,

2 1 2
*0 11

2 2
0

, , , , , ,
′ ′′

= = = = = =
′ ′ ′a e r

g d KK SF D L P S
dd d

α β ρµ κ ν γ γ
κ κ µκ βν ρ

2
0 1=

g K d
R

α β ρ
µκ

, 1
2a r a

KD V D
d

µ
µ

= =
 . (16)

Here, R is the Rayleigh–Darcy number, which is the 
product of Darcy number and the usual Rayleigh number 
for a clear viscous fluid; 

aD  is the Darcy–Brinkman 
number; aD  is the Darcy number; aV  is the Vadasz 
number (as named by Straughan [9]), F is the Couple-
stress parameter, S  is the solute Rayleigh–Darcy number 
and eL  is the Lewis number.

On multiplying (12) by ,q  14) byθ , (15) by γ  and 
integrating over ,V we get (after using equation (11), the 
boundary conditions and the divergence theorem):

( )
2 1 2

2 2 1 21
2

= − − + ∇ + −
q

q q
a

a e

d SF D R w w
V dt L

θ γ , (17)

2
2 1 2 ,

2
= − ∇ +

dA R w
dt
θ

θ θ (18)
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2
2 1 21 ,

2
= − ∇ +

e

dA S w
dt L
γ

γ γ (19)

where ⋅  denotes the integration over ,V  ⋅  denotes 
the 2 ( )L V  norm and V  denotes a typical periodicity cell.

To study the non-linear stability of the basic state (5), 
an 2L  energy, ( ),E t  is constructed using equations (17)–
(19), and the evolution of ( )E t  is given by

0 0 ,= −
d E I D
dt (20)

where

2 2 21 2

2 2 2
= + −q

a

AAE
V
λ λθ γ , (21)

1 2 1 21
0 1 2( 1)

 
= + − + 

 e

I R w S w
L
λλ θ λ γ , (22)

( )2 2 2 22
0 1 1= ∇ + + + ∇ − ∇q q

a
e

D F D
L
λθ λ λ γ , (23)

with 1λ  and 2λ  as two positive coupling parameters.
Here, the negative sign with the 22

2
Aλ γ  term in the 

energy equation (21) shows that energy of the system is 
consumed due to solute concentration as the system is 
soluted from below. Now, we take the assumption that the 
energy consumed due to solute concentration is less than 
the energy produced due to velocity and temperature. 
We also assume that the energy dissipated by the solute 
concentration is less than the energy dissipated by the 
velocity and temperature. These assumptions will ensure 
that all the terms on the right-hand side of (21) and (23) 
are always less than those on the left-hand side of these 
equations.

We now define,

0

0

max=
H

Im
D

, (24)

where H  is the space of admissible solutions.
Then, we require 1<m so that

0 0≤ −
d E a D
dt

(25)

where 0 1 ( 0)= − >a m .
From the Poincaré inequality, we have

( )2 2 22 2 *2
0 1 1 ≥ + + + − ≥  q

a
e

D F D k E
L
λπ θ λ π γ ,

(26)

where ( )* 2 12 min , −= ak A Vπ .

This gives

*
0≤ −

d E a k E
dt

(27)

implying
( ) ( )*

0 0−≤ a k tE t e E . (28)

Thus, E decays at least exponentially fast, and non-linear 
stability is assured for all values of E (0). It is important to 
note that the result holds for all initial data.

4  Variational Problem
We now return to equation (24) and use calculus of variation 
to find the maximum problem at the critical argument 

1m = . The associated Euler–Lagrange equations after 
taking transformations 1 2ˆ ˆandλ γ λ γ= =q q  
(dropping caps) are

( ) ( )2 1/2 1 2 1
1 21 2 1 2 1 2

1 1 2

1 1ˆ ˆ2 2 1 2
 

+ ∇ − + + − + = ∇ 
 

q q k k
a

e

F D R S p
L
λλ θ λ γ

λ λ λ
,

(29)

( )2 1/2
1 1 2

1

12 1 0∇ + + =R wθ λ
λ

, (30)

2 1/2 1
2 1 2 1 2

1 2

2 1 0
 

∇ + + = 
 e e

S w
L L

λγ λ
λ λ

, (31)

where p is a Lagrange’s multiplier introduced, since q  is 
solenoidal.

On taking curl curl of equation (29) and then taking 
the third component of the resulting equation, we find

( )4 2 1/2 2 1 2 21
1 1 2 11 2 1 2 1 2

1 1 2

1 12( ) 2 1 0
 

+ ∇ − ∇ + + ∇ − + ∇ = 
 


a

e

F D w w R S
L
λλ θ λ γ

λ λ λ
.

(32)

Now, we assume a plane tiling form

( ) [ ] ( ), , ( ), ( ), ( ) ,= Θ Γw W z z z g x yθ γ , (33)

where 2 2
1 0∇ + =g a g , a being the wave number [9, 42].

The wave number is found a posteriori to be non-zero; 
thus, from equations (29)–(31), we see that andW Θ  
satisfy

( )( ) ( ) ( )22 2 2 2 1/2 2
1 1 2

1

1/2 2 1
2 1 2 1 2

1 2

12 2 1

1 0,

+ − − − − + Θ

 
+ + = 

 


a

e

F D D a W D a W R a

S a
L

λ
λ

λλ γ
λ λ

 

(34)
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( )2 2 1/2 1
2 1 2

1

2 1 0
 

− Γ + + = 
 e e

D a S W
L L

λλ
λ

, (35)

( )2 2 1/2 1
2 1 2 1 2

1 2

2 1 0
 

− Γ + + = 
 e e

D a S W
L L

λλ
λ λ

. (36)

Thus, the exact solution to the equations (34)–(36) subject 
to boundary conditions

20, 0, 0= = Θ =W D W , 0Γ =  at 1
2

= ±z (37)

is written in the form

0 cos ,=W A zπ 0 0cos , cosΘ = Γ =B z C zπ π (38)

where 0 0 0, and A B C  are constants. Substituting solution 
(37) in equations (34)–(36), we get the equations involving 
coefficients of 0 0 0,  and  A B C . For the existence of 
non-trivial solutions, the determinant of the coefficients 
of 0 0 0,  and  A B C  must vanish. This determinant on 
simplification yields

      
( ) ( )( ){ }

( )

2
2 1 1

1 2
1 2

2
1

1

4 ˆ1 1 1

1 1

 
+ + + + + + 

 =
+

a
e e

e

e

xSx F D x
L L

R
x

L

λλ
λ λ

λ
λ

, (39)

where 

2
2 2

1 12 2 2
ˆ, , , ande a a

R a SR D D x F F Sπ π
π π π

= = = = = .

The maximum value of 1λ  and 2λ  is determined by 
the conditions 

1 2

0and 0e ed R d R
d dλ λ

= =  and is found to be

1 2
11,= =

eL
λ λ . (40)

Using (40) in equation (39), we have

( ) ( )( ){ }2
1

1

ˆ1 1 1+ + + +
= +

a

e

x F D x
R S

x
. (41)

We obtain the fluid-based thermal Rayleigh number as

   

( ) ( ) ( ){ }2
1

11 1 1 1
 

+ + + + + 
 = = +

r
ae

ef f
a

x x V F x
DRR S

D x
. (42)

As a function of x , efR  given by equation (42) attains its 
minimum when

3 2
3 2 0 0+ + =P x P x P , (43)

where
1 1 1

3 2 0
112 , andr r r

a a a a

F F FP V P V P V
D D D D

        +
= + = + + = − +        

           
.

The thermal Rayleigh number e fR  is minimized with 
respect to x, and we use the Newton–Raphson iterative 
scheme to obtain the value of critical wave number and 
the corresponding critical thermal Rayleigh number ce fR

 (see Tables 1–3).
For analyzing the linear instability results, we return 

to the perturbed equations (7)–(10), neglecting the non-
linear terms. We again perform the standard stationary 
normal mode analysis and look for the solution of these 
equations in the form (38). The boundary conditions 
in the present case are same, i.e. (37) (here, the thermal 
Rayleigh number).

( ) ( ) ( ){ }2
1

11 1 1 1
 

+ + + + + 
 = + =

r
a

f f ef

x x V F x
D

R S R
x

 

(44)

In the absence of solute ( 0=fS ), this further simplifies to

( ) ( ) ( ){ }2
1

11 1 1 1
 

+ + + + + 
 = =

r
a

f ef

x x V F x
D

R R
x

 (45)

i.e., in both the case, the linear instability boundary ≡  
the non-linear stability boundary, and so no subcritical 
instabilities are possible for the case of couple-stress fluid. 
This result is equivalent to the result given by Joseph [4, 5] 
for the standard Bénard problem.

5  Discussion Of Results And 
Conclusion
The critical wave numbers andc cex x  and critical 
thermal Rayleigh number R =ef ce fR  depends on the 
parameters 1, ,r f aV F S and D . The variation in 

cx and cefR  with the variation in 1F  is given in Table 
1, that with the variation in aD  is given in Table 2 and 
that with the variation in fS  is given in Table 3, and the 
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results are further illustrated in Figs. 2–4, which represent 
the plot of critical thermal Rayleigh number cefR  versus 
the parameter 1,F  aD and fS , respectively. Figure 2 
indicates that the parameter 1F  has the stabilizing effect 
on convection because as 1F  increases, the value of cefR  
increases. We also note that the value of critical thermal 
Rayleigh number remains the same for both the theories 

Table 1: The variation in the fluid-based critical thermal Rayleigh 
number Rcef with the couple-stress parameter F1 for Da=0.02, Vr 

=1 
and Sf = 100.

F1 xce Rcef 

01

2

3

4

5

6

7

8

9

10

0.9636

0.6154

0.5682

0.5483

0.5374

0.5305

0.5258

0.5223

0.5197

0.5176

0.5159

307.90

661.40

1001.9

1340.8

1679.0

2017.0

23537

2696.0

3030.3

3367.9

3705.6

Table 2: The variation in the fluid-based critical thermal Rayleigh 
number Rcefwith the couple-stress parameter (Da ) for F1=2, Vr=1 and 
Sf = 100.

Da xce Rcef 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.5684

0.5682

0.5679

0.5676

0.5673

0.5671

0.5668

0.5665

0.5663

0.5660

0.5667

1897.1

1001.9

7017

5532

4636

405.2

365.0

330.6

305.7

285.8

269.5

Table 3: The variation in the fluid-based critical thermal Rayleigh 
number Rcefwith the solute gradient (Sf) for Da, Vr =1.
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(linear theory and non-linear theory) and no subcritical 
instabilities are possible.

This conclusion is further strengthened in Fig. 3, which 
shows the variation in cefR  with Darcy number aD  at F 
= 2, 1=rV . Here, an increase in aD  leads to a decrease 
in cefR , rendering the system prone to instability. Figure 
4 indicates that the solute gradient fS  has a stabilizing 
effect because with the increase in fS , the values of cefR  
also increase. Here, two diffusing components heat and salt 
are present that produce the density differences required 
to derive the motion. The components make opposing 
contributions to the vertical density gradient as motion 
is encouraged due to heating and solute acts to prevent 
motion through convection overturning. Thus, these two 
physical effects are competing against each other. We also 
note that the value of critical thermal Rayleigh number 
remains the same for both the theories (linear theory 
and non-linear theory) and no subcritical instabilities 
are possible. In other words, medium permeability 
destabilizes the flow. To investigate our result, we must 
review the results and its physical explanation. When the 
fluid layer is assumed to be flowing through an isotropic 
and homogenous porous medium, then the medium 
permeability has a destabilizing effect. This is because, as 
medium permeability increases, the void space increases, 
and as a result of this, the flow quantities perpendicular to 
the planes will clearly be increased. Thus, an increase in 
heat transfer is responsible for early onset of convection. 
Hence, an increase in aD  leads to a decrease in cefR .

The principal conclusion from the above analysis is 
as follows:

 – The result we establish is that boundaries of non-
linear stability and linear instability analyses coincide 
with each other. So, no subcritical instabilities are 
possible.

 – The couple stress has the tendency to slow down 
the motion of the fluid in the boundary layer, thus 
reducing the heat transfer from bottom to top. The a 
decrease in heat transfer is responsible for delaying 
the onset of convection. Thus, the couple-stress 
parameter 1F  promotes stabilization.

 – The medium permeability is found to have 
destabilizing effect on the system.

 – It is observed that solute gradient delays the onset 
of convection and thus has a stabilizing effect on the 
system.
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