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Streszezenie: Przedstawiono matenatyczng analizg vogdinionych siabilnodci magneohydrs-
dynamicznych termabalinewyeh preeplywdw Scinajycych, Ieh fizyczna kenfiguracia jest tvpu
poziome] warstwy, niescisliwej. niclepkicj. przewodzacej cieplo, o zerowej reaystywnosel. Za.
chodzi w nigj réznicowy przeplyw U(Z) w kietunku poziomym i zmicmia sic gostosé oy (7))
w kicrunku pionowym, pedezas gdy caty ukbad jest ograniczony dwiema poziomymi granicamj
o roznej. ale stalej temperaturze i stezennn. W jednorodnym polu magnclycznym lemperatura
1 sigzénic dolnc] granicy sa wicksze nik gérnej, & jest dodatmig stala, (ZY 0 fi{Z) sq ciaglymi
funkcjami wspdlrzgdne pionowej Z, a d//dZ < 0 w calym obszurce preeplywu. Wyprowadsono
warunki dostateczne dia nodstabilnodct | podano ograniczenia dla dowoinie niestabilng) warto-
sei modalnej ukladu w preypadku, gdy Wmperatura 1 slgzenic majg odwrolne udzialy w gra-
diencie pionowe) ggsiosci,

Abstract: The paper presents a mathemaztical analysis of the stability of generalized hydromag-
netic thermohaling shear Nows: The physical configuration is that of @ horizontal layer of an in-
compressible inviscid heat conducting of zero electrical resistivity in which there is differential
streaming LNZ) in the horizontal direction and density variation g (2} in the vertical direction,
while the entire system is confined between two horizontal boundaries of different but uniform
temperature and concenlration with the lempersture and concentration af the lower boundary
greater than thar of upper one in the presence of & uniform hoerizental magnetic ficld, g3 being
a posilive constant having the density and 1) and [() being continuous Tunctions of the verli-
cal co-ordinate Z with o f/dz < 0 everywhere in the flow domain. Sufficient conditions are derived
for overstabilicy to be valid and hounds are presented for an arbitrary unstable mode of the sysiem
for the cases where the wmperature and the concentration make opposing contnibutions o e
vertical density gradient.

Peltovie: lipeacTanied sMoTemaruHecsnil aHeins 00obWeHHEN VOToiHBOCTeH MarHHTOTHAPO-
JMHAMHYCCKHA. TCPMOIRUCHILIX  cpesninaiomuy . Teuwcunil, Mx fnawdeckas Koriprrypaia
ARIARTCR THNZ FOPHIOHTAABHOID CAUK, HECKUTAN, NCBASKUN, TCIUIGIPOBULHAR, Hy/IeROID
Facaslioro coupotueacuns. B ouch usmccres amidiepenamannioe Tenenue {2} B [opu3cH
TATRHOM HANPABICHHEN ¥ MIMCHACTCH IICTHOCTS O (£) B BCPTHKAILION HanpaBjeiHd 8 10
BPCMS, KOTZ3a BCA CHCTCME OPaiHYena ARYMA rpaudiamn pasuofl, Ho nocTosuHol TeMme:
PATY 1l KOKUSHTPAIMH. B GZHOpOANEY MAIIHTHOM [104¢ TEMIEPUTYPA M KOHUSITPELHA
HiKICH FpaliUL] CTAHODATCA BLINE, 4em RepXHedl, gy RBIACTCE NONOEHTC/LHEM NOCTO:
AR, (7)) 1 f(7) SRIN0TCE HENPEPHEHMMN (byHKUMAMHICPTHRANLION KoopamiaTh L
adfidz <0 po peedi JoHe Temenn. Boilbeasiu AQCTATOMNLIC YCIOBHA I8 CBCPXYCTOAYHEACTH
HOIOANL OFPOHBYCIHE JLTE NPOHEERIRHD IIC)’CT&IE‘IHHUM MOIRARHOID IHAMECHEA CHCTEMEI B €Y~
IlC. KOorag TEMIEPATYRE H KOHUCHTPAUKA HMCIOT oOpaTHoC YYACTHE B TPAdMCcHTC BUpTH-
KEHOR nNoTHOCTH.



64 H. Monas et al.

. INTRODUCTION

The stability of parallel shear flow of an inviscid non-homogeneous fluid with
stable density stratification to infinitesimal non-divergent disturbances has per-
vaded the scientific literature fairly recently on account of ils importance in the
ficlds of meteorology and oceanography etc. The analysis in this paper is primarily
based on the fundamental works of TAYLOR [1], GOLDSTEIN (2], DRAZIN [3],
MILES [4]. HOWARD [3] and others on the stability of non-homogeneous shear
flows, and is motivated by the concentration that in the mathematical model of the
problem considered by these authors the fluid is taken to be initially non-
homogeneous without assigning any reason for the cause of this initial non-
homogeneity. However, the initial non-homogeneity may be due to variable tem-
perature or concentration or some other cause. Diffusion effects, which tend to pro-
duce these changes in the density of an individual fluid particle in the course of
motion, are ignored in the investigations. Therefore, it becomes important to inves-
tigate the problem by retaining the initial non-homogeneity and also taking into
account the diffusion effects. GUPTA et al. [6] investigated the problem by taking
into account the chunges in density due to thermal effects and referred to the prob-
lem as the problem of generalized thermal shear flows.

In the present paper, sufficient conditions are derived for overstability to be valid
and bounds are presented for an arbitrary unstable mode of the system by taking into
account the change in density due to both thermal and concentration effects (the
problem here referred as generalized thermohaline shear flows) in the presence of
horizontal magnetic field.

2. MATHEMATICAL FORMULATION AND ANALYSIS

The relevant governing equations and boundary conditions of thermohaline
shear flow wherein a uniform horizontal magnetic field is superimposed are given
by [6]

(U -c) (Dz -—az}{a-[ﬂ —C](:':.";t'.f"Jﬂ.l—Q(J!'.'J'2 —r:EJm+ R.w
=iRalU -C)o-iRall -C)¢. (1)

{D:-az—:‘a(U-C}}.ﬂ:—w. (2)

{Dz—ﬂ:—fiﬂ;’ -C]}¢=-E_ (3)
( T r
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where
df
io R oa o HoE 2 _QI
C=—, R, =R,N°, R, =%~ and N =—8L
a Kr Py

is the Brunt—Vaisala frequency. The various symbols occurring in the governing
equations have their usual meanings.

The solution of equations (1)~(3) must be sought subject to the following bound-
ary conditions:

w=8=¢=0 at z= and z=1. (4)

Equations (1)(3) together with the boundary conditions (4) present an eigenvalue
problem for C(=C, +:'C',) for given values of the other parameter, and a given state
of the system is stable, neutral or unstable, provided the C; is negative, zero or posi-
tive, respectively. Further, if C; = 0 implies that C, = 0 for every wave number a, then
the principle of exchange of stabilities (PES) is valid. Otherwise we have overstability
at least when instability sets in as certain modes. It is to be noted that the inclusion of
the convective effects of heat and mass transfer make the definition of stable, neutral
and unstable modes distinctly clear in the sense that the existence of a stable mode is
no longer implies the existence of an unstable mode etc., as is there in the classical
instability problem of heterogeneous shear flows.

We prove the following theorems:

Theorem 1.1f (C,@.6,8), C = C, +IC,; is a solution of equations (1)—(4) with R, > 0,
R.>0,0>0and Q<U;, and
(i) UDU >0, vZe (o],

IUDEU‘ _2 (D) £
2 v 2

aun

then C, =0 = C, # 0 for some wave number a.

(i) R, <

Proof. If possible, let C;=0 = C, = 0, Va so that C = 0 is allowed by the gov-
erning equations and boundary conditions.
Equations (1)=(3) then assume the form

U (p?-a*)o-U(D0)o-0(D* - o) o + Rw=iRaBU iR aUs,  (5)

{D:-al—fau}{i‘:—m, (6)

{Dz—a’—ﬁ‘-f’i};a:—ﬂ. 0
T T
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In view of condition (i) of the theorem
U0 vzelo.1].

so that equation (5) can also be written as
v - a?)w-(pU)w- 0 (D? —a-")gi +R, {i =iRef-iRap. (8

Multiplying equations (8), (6) and (7) by &, =iRj¢0" and iTR.a¢” (" indicates
complex conjugation), respectively, integrating over the vertical range of Z by parts
appropriately, using the boundary conditions (4) and adding the resulling equations,
we arrive at

] U(lﬂw{z +a’|of )rfz + }'m'ﬂu Dwdz + ]I(D"'U)!mfdz
u a ¢
I

+Ra* ]UI ﬁr'dz + iRIaleGD;#iz + ull @lz)rf:{ —-iRa I(!D(?F + a:] HJE]
i

1]

I_{ ([Dm| +a’|o| )d:.+QIM¢L

I
= J‘F—*;mrdz +2iR aR, J’gﬁw'dz -2iRaR, j&‘w'dz ; 9)

u

where R, stands for the real part.
Equating the real parts of equation (9), we have

]U(]Dmf oot )z + _[ (Dzu](lmf)dr_ﬁa?1_{1*[9]"':!
; b LTE ZT N s Z

0 o o
0" |mEDZU . i |mEE{DU}3 . "1 1 1
_EJ Lf: dz +QEI-TJL“QJE(ED&JI szifﬂl ]ﬂr,_
R =& 2
- J’Eﬂm d:’.-l-Rva'!UI;ﬁl dz. (10)

Multiplying equation (7) by its complex conjugate and integrating over the vertical
range of Z, we obtain

I
o) e e fofas= % fofee. v

t'.l
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Condition (i) of the theorem implies that either (a) U >0, DU >0or

(b) U <0, DU <0, ¥ze [0.1].
If {a) holds, then equation (11) gives

i !
2 1 ¢l ]

¥ = 1l 2

E[Lr!;i-] dz < = ;,[U o] dz . (12)

Using inequality (12) in equation (10), we get

ol (DU)

]|KU ~er{lﬂm|3 + azlculz }dz +Ra* I‘ﬂ SEZ Udz + Qlﬂ dz
P U ] 1]

B

i)

[UD“-U (DY

.
. - Ra-RLJ‘mJ'dz <0. (13)

If (b) holds, it is easily seen that inequality (13) assumes the form

for

J{’Dw[ ~a |m] }chl-Ha ’ﬂUHBJ dz .,.Q‘l‘iﬁ-’[ (DU

s luf

L (wllo w
IIUF IUiJZDLf |D_li!Q R;-&JIMF@:O- o

Inequalities (13)~(14) obviously cannot hold under conditions (i) and (ii} of the
theorem. Hence, in the condition of the theorem C, = 0 = C, # 0 for some wave num-
ber a. This completes the proof of the theorem.

The essential content of Theorem 1, from the point of view of hydrodynamic in-
stability, is that an arbitrary neutral mode in the problem of generalized hydromag-
netic thermohaline shear flows of Veronis [7] (R; > (. R, > 0) is definitely not non-
oscillatory (C, = 0 in character, ie., PES is not valid if D >0, everywhere in
((.1) and

(i) @<l .

f UD U {)fJ U
R = —
llrn} & 2 U l‘r(‘z.}lﬂ'lil I

Special cases. It follows from Theorem | that the PES is not valid for
(i) Generalized thermal shear flows (R, =0 = Q) if
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[
UDU >0, ¥zelo,l] and ¢
L J min
(ii) Generalized hydromagnetic thermal shear flows (R, = () if

UDw >0, vzelo1] ana {YBY_QDU ol o
5 o
nER

{ii1) Thermal shear flows (R, =(=R;= Q) if
UDU >0, vzeloll

In fact if U is linear and U(Z)#0, ¥Z e [0,1], then one could see from proof of
the theorem that the result remains valid.

(iv) Hydromagnetic thermohaline shear flows of Veronis type (R: = 0. R, > 0,
R, > 0)if

UD >0, vzeln.] and R,s{”’::”-gfu} .

(v) Thermohaline shear flows of Veronis type (R, >0, R, >0, R:=0= ) if

TrVEr
UD >0, vzelo1] and stjwi’}

{vi) Generalized thermohaline shear flows of Veronis type (Q = 0) if

uDU >0, vzel0,1] and R, s{”ﬁ'u —Ral
= Jmin
Theorem 2. If ((C, w, 6, ¢), C=C, +iC, is a solution of equations (1)—(4) with
R, >0,R>0,0>0und Q< and

(i) U>0and DU <0, ¥Ze[01], or (b) U <0and DU 20, ¥Ze0,1],

(i) R < <33U3—|UD—2_U|>|ILHE%\E—RJ .

\ / f
4 min
then C, =0 = C, # O for some wave number «.
Proof. If possible, let

C,'=n=>Cr=':}-. Hﬂ.
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so that € = 0 is allowed by the governing equations and boundary conditions. Pro-
ceeding exactly as in Theorem | upon considering the case (a), we have

of* EDU|

dz

IU(!D&:| +a’|of ]d 2+ Ra’ J’le dz —-lj dz +Q_[
0

= }'_Uﬁ.lmfdz... Rsa:[uﬂﬁﬁdz +Q;E([Dw|2 -;-az]a:r[:)dz+zéﬂﬂtf|z =k

il

dz.(15)

Equation (15) together with inequality (12), vields

]- (ID(.:JF—ra I&Ji )(a"‘ +Ra* nygl dz + Q ['J | Qflw| |DU

"’ -
0 *'::r!r"II

3 | ol® e A |t By oL . T
{6[?|w| dz , EEﬂD U||w| dz 4 QJU {|Dw| +a* |o)| )d-‘. (16)
Now since U/ >0, U* -0 >0, ¥Ze [0.1], we have

2= ] i APsaY %
!’L 7 Q}[Dmi dzZ[TQJm{:l'lDw[ tz .

which upon using the Poincare’s inequality, namely,

1 |
I[Dﬁfdza:r"j[f;:dz, (17)
L1} ]

where f1(0) = 0 = fi(1) with f; = @, gives
i H
[vpaf a2 2%, [|of dz. (18)
[ i}

Using inequality (18) in inequality (16), we obtain

- ' Uafl—“Q- )

Ll — W U7 -2 3-__l:*
uj‘u-iug ; 2[1 Ulj[UD Ul-&, Rjiimi dz
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1 !
+R,fﬁj'u\9|‘dz+g}'| of |DUI dz <0, (19)
(1] ]

Similarly in case (b), it is easily seen that inequality (19) assumes the form

U'ﬁ——%} \ i

| s !
i =) -3 leeul- R,j.qwz
+R,u3]liu! Q'Iiwlij’f":{g. (20)
4]

Inequalities (19)-(20) obviously cannot hold under the conditions of the theorem.
Hence. under the conditions of the theorem C, = 0 = C. = 0 for some wave number «.

This completes the proof of the theoram.

The essential content of Theorem 2, from the point of view of hydrodynamic in-
stability, is similar to that of Theorem 1.

Special cases. It follows from Theorem 2 that the PES is not valid for
(1) Generalized thermal shear flows (R, =0 = ) if

U>0, DUL0, or U<0, DU20, ¥Zelo.1]

{ﬂ.luz

(it) Generulized hydromagnetic thermal shear tlows (R, = 0) if

and

—33}_ 0.

V>0, DU<0, or U<0, DU20. vzeln.l]

i '
{(fu: —l|umluf>| 1—2._)- Rs} 20
\ ?— LS UH N

(i) Thermal shear flows (R, =0=0 = Ry} if

and

U0, D=0, oo U<0, DPPuzo. vZelo1]
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and

s I | 1] 7 .‘I
{::'U' ~-luptulr 2o,

4 TEn

(iv) Thermohaline shear flows of Veronis type (R:=0=0. R, >0, R, > M if
U>0, DU=L0, o U<0. DUz0, vZe[n.]]
and

[ i 1 | ]
Rj.si;ru - D U” .

L

(v) Hydromagnetic thermohaline shear flows of Veronis type (R; = 0, R, > 0,
R, >0)if

U>0, DU<0. or U<0, DU20, vZe[o1]

and

/ %)
R, sK;ﬁU" —i]UD’UDI O
' 2 L -ﬂ',rman
(vi) Generalized thermohaline shear flows of Veronis type (0 = 0) if

U>0, D=0, or U<0, DU20, vZelol]

and
3
|

R < 4(::’&' 3 —-1-}‘J:,u:ﬁui>-ﬂ*3 fo
2 min

Theorem 3, If {((C,w, 8, ¢), C=C, +iC, is a solution of equations (1}~(4) with
Ri<0,R, <0, Q>0and Q<U}
() UDU >0, vZe[0.1].

Gy [ 222 LR U L
z 2

Jr:t'r.']

and

EER

-

then C, = () = C, # 0 for some wave number a.

Proof. Puting R =—|R| and R, =-|R| in cquation (10) and using the in-
equality
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]uJeFdH 2 ]‘i|w|*dz, (21)
i at 3 [}

which is derived from equation (2) in a manner similar to the derivation of inequality
(12), and proceeding exactly as in Theorem |, we get the result. This completes the
proof of the theorem.,

Theorem 4. 1f ((C, w, 8. ¢). C=C, +iC, is a solution of equations (1)~(4) with
Ry <0,R,<0,0>0and Q<Up; and

(M U>0, DU<0, vZe[0.1] or U<0, DU 20, ¥Zelo,1],

B

then C, =0 = C, # 0 for some wave number a.

(i) |R|< {(:r*{;’ ——;—|UD*U

Proof. Putting R, =-|R| and R, =—R | in equation (10), using inequalities (18)

and (21) and proceeding exactly as in Theorem 2, we get the result. This completes
the proof of the theorem.

The essential contents of Theorems 3 and 4, from the point of view of hydro-
dynamic instability, are similar to the two earlier theorems. However, presently
the problem is that of generalized hydromagnetic thermohaline shear flows of
Stern’s [8] type (R, < 0. R, < 0). Further, special cases of Theorems 3 and 4
analogous (o that of the earlier theorems could be easily written down in the pres-
ent case also.

Theorem 5. If ((C,@.8,9), C=C, +iC, is a solution of equations (1)-(4) with
Ri>0,R >0 and Q > 0. then C, < & where ¢ is the positive root of the cubic
bl ok -7qC =RC, -nQq =0, where g= (iDUI)m

Proof. Since U -C#0, ¥Ze [0.1]. therefore dividing equation (1) throughout by
(/ = C) and then proceeding as in Theorem |, we arrive at

](U ~C) (\Dw[z ralof )z + Jj{.tu:;}{.s;u' J(Dw)d:

i
+ [(0°0)| e dz + Ra? i[(u ~C)|6] dz +irR,a
0 0
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ij'(lD:;rF +a’ z)dz—fﬁlaj(fﬂﬂr +u2|ﬂf=)
fl [
1 L3
Qj(u IC](D&}I +atlof )d +0 %‘%—d:
=I |m‘ +2iR,aR Iaw dz-2iRaR J.Su dz . (22)

U

Equating the imaginary parts of equation (22) and dividing the resulting equation
throughout by Ci{> 0), we get

z 2
+4a

I“Dmf +a3|m|:)dz +R,a"’_l[ jﬂ|2dz+‘zl:’j (
of B (o) RI(Mdz)+QI =

) |U=-cff
I(DUHW ) (Dw)dz |+1, Q UDw' DU
Cy W-0°

Rr[fﬂﬂ}‘d".], (23)

(|Dm|1 +az]w]1)dz

1

+E¥J' ([D¢ |+ a3|¢|3]dz + R,azﬂgﬁ\ldz +
i o

4

where I, stands for the imaginary part.
Using equations (2)—(3), it follows that

Re[jﬂw'rfz]=j‘ (|Da|’ +a*|of +ac6f )a‘: (24)
0 1]

and
L u - .
R,[J'@m‘dz]n | (|D¢[' +alof + ac,.iaf)dz. (25)
1] i

Substituting from equations (24)~(25) in equation (23) and simplifying the result-
ing equation, we obtain
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)

[Dw] +a*|el d )

(lna +a’ |¢] L

[{lpaf + alof )i+ £

Je q {Iwi’) ;

:%J[|D€iz+az|3]3+ac,-!€| ) z+1 [

Gq_._"-

(DU} (@) (Dw) ﬂ;&

¢, w-coy

{ I .
Q r(DU)(Dw)w W
[,|= | ————udz|. 26
L [ (26)

Multiplying equation (2) by ", integrating over the vertical range of Z by pant
once, using boundary conditions (4) and cquating the real parts of the resulting equa-
tion, we arrive at

'I( c4at ]ﬁ|1+ﬂ(f'!9‘1)dz =K Ja)ﬂ'dz],

I
o &

ots]

|
< [|oo] 6] .
0

=

f=. —_

Fl
|

I 12 12
51' _[]m]:dz} .{ﬂ&[ldz} ; 27)
Lo 0

It follows from inequality (27) that

1 | 1 i 142
aC:-_ﬂﬂlzﬂ': c{“mrdz} {‘[[Hrdz} s
u

o 0

1 Iz 1 12
2 | ] 2
z — : (28}
{!|5‘| d j S i || dz}
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Using inequality (28) in inequality (27), we obtain

I

[ (jpf +a?lop

z)dz ‘:aLC, ]|w|:d: ;

which upon using inequality (17) with f; = @ gives

1
| (Ip8ff + 6] +ac)6f )az <

e L

Further

1 |
L, (CL I(DU} (@) (Dw) dzJ L_ﬂ Do |o||Dal ¢z,
i 0

I

which upon using incquality (17) with f| = @ gives
1 i - iq ! 2
IL|— | (Dw) (@) (DU)d: s—— | |Pw|"dz, (30)
m(qu ) (@) (DU) J QHJI |

where ¢ = (JDUl)m and

(_1_ ‘I (Dw') (@) (DU) dz \‘I Pe f Do) | [DUI
m C = C
g 2 i

w-cy W -cy

which upon using inequality (17) with fi = @ gives
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g _ﬂDm| dz, 31)

L[2 @) @@ ), o
" | Gz

(B (U =-C)*

Lo

where g = (|DU|)M
Equation (26) upon using inequalities (29)+31) gives

-

i
il- 1R q Qq }“Dmlzdz +a’ j|w|3dz

#C~ TC m:‘ i

S ]((lwl o] 25 o )

I o

'If|uc1 Q 7

Since a>0,C; >0, v>0, R, > 0 and R; > (), therefore inequality (32) clearly im-
plies that

(32)

7 Cl —mg C} ~R\C,- mQq <0,

Hence, if &, o, ¢ are roots of this cubic, then ayenes = Qg > 0 = cubic has
one and only one positive root &; = « (say). Thus the above cubic yields C; < &. This
completes the proof of the theorem.

The essential content of Theorem 3, from the point of view of hydrodvnamic in-
stability, is that the growth rate of an arbitrary unstable (C, > 0) mode in the prob-
lem of generalized hydromagnetic thermohaline shear flows of Veronis type (R; > 0,
R, > () is necessarily bounded with upper bound ¢ Further, this result is uniformly
valid for the problems of hydromagnetic thermohaline shear flows, generalized
hydromagnetic thermal shear flow, generalized thermohaline shear flows, etc, of
Veronis type.

Theorem 6. If ((C.w.8.0), C=C, +iC,. C; > 0 is a solution of equations (1)~(4)
with B, < 0, R, <0 and @ > 0, then C, < @ a being the positive root of the cubic
mC ~mgC2 -

G, —7Qq =0, where ¢ is as defined in Theorem 3.

Proof. Putting R, ={R,|. R_.=—‘R\| in equation (26), using incqualities (30},
(31 and

:dz : (33)

r]- (|po|+a?|g]) dz + acC, j'|wl

iy
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which is derived from equation (3) in a manner similar to the derivation of inequality
{29), we obtain the result. This completes the proof of the theorem.

The essential content of Theorem 6, from the point of view of hydrodynamic in-
stability, is similar to that of Theorem 5. However, the problem presently is that of
generalized hydromagnetic thermohaline shear flow of Stern's type.

REFERENCES

[1] TavicrG.L. Proc. Roy. Soc (London), 1931, A132, 499.

(2] GeangasTemy S., Proc. Roy. Soc. (London). 1931, Al32. 524

(3] Drazix P.G.. J. Fluid Mech., 1938, 4, 214

|4] Mies LW, . Fluid Mech., 1961, 10, 496,

(5] Howarp L.N., J. Fluid Mech,, 1961, 10, 509.

|6] Gurra JR., Mg B.. Baveriee R.. Pataania €., Dusg SN, 1. Math. Phys. Sci., 1977, 11, 165,
(7] Verowis G., I Mar. Res., 1965, 23, 1.

(8] StEry M.E., Tellus, 1960. 12, 172.



