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Streszezenie: Budano miestabilnesé typu Rayloigha-Taylora cicezy Newtona nukladajgee) sic na
lepkoesprezysig clecz Riviina-Ericksena w asrodky purowatym. Ponicwaz zardwna w lepkiej cic-
czy Newtona, jak i w lepkiej cieczy uklad jest stabilny w potencjalnie stabilnym przypadku.
4 niestabilny w patencjalnie niestubilnym preypadku, wniosek ten odnosi sig tez do hadanego
przez nas problemu. Rozwazono addrielnie wplyw jednorodnego poziomego pola magnetycz-
nego i wplyw jednoradne) rotacji na niestabilnodé. Pole magaetycene stabilizeje pewne pasmo
liczby falowej. podezas gdy uklad jest niestubilny dla wszysikich liczb fzlowych, gdy brak pola
magnetycznego dla potencjalnie niestabilnej kenfiguracji. Uklad jest jednak stabilny w poten-
cjalnie stabilnym preypadku. a niestabiiny w potencjalnie nicstabilnym proypadku dla bardzo
lepkich cicezy poddanych jednostajnej rotacji.

Abstraet: The Rayleigh=Taylor instability of a Newtonian viscous fluid overlying a Rivlin-Ericksen
viscoclastic fluid through porous medium is considercd. As in hoth Newtonian viscous—viscous [u-
ids, the system is stable in the porentially stablc case and unstable in the potentinlly unstable case,
ttns holds for the present problem as well. The effects of 2 uniform horizontal magnetic field and
2 uniform rolation on the mstability problem are also considered separately. The prescnce of mag-
netic ficld stehilizes a certain wave-number band, whereas the system is unstable for all wave-
numbers in the absence of the magnetic ficld for the patentially unstahle configuration. However, the
system is stable in (he potentizlly stable case and unstable in (he potentially unstable case for highly
viscaus Muids in the presence of a uniform rotation,

Pesome: Hecacaonana iieyerodivusocts Pelinea-Teiinopa nsioToHORCKOH &nIKocTH. Ha-
E-RLABBAIOWHNCA HA BHIR0YUPYTYIo #HAk0CTs Pusmmna-Opukcens 8 mopucTodt cpeje. Ha-a
TOTO, NTO KK B BAZKOH NLIOTOHOACKOH MIIKOCTH. TAK M B USIKOH WHAKOCTH CHETEMA SRISCTCR
YETORMMBOIE B MOTeNNHANLHO YCTORYHBOM Cayyae, & HCVETORYMNEOI] B HOTCHUHATEHO HEYCTU-
HHBOM. JTOT BHIBUA RUCASTCA TAKME HCLICAYEMOTO HaMmil BONPOCa, OTALIsHL paccMoTpeno
BAHANNE OXOODANOTS TOPHIOHTHILIOND MATHITHOO NOAA H PARHOMCPHOTO BPAINATEN RGO
ABICACHER 13 1Y CTORMMROCTL. Marinrnoe ione eTabiuamsmpyer HCKOTOPVIO 10AQCY BOIHODBO-
Fi HHC3 B TO BPCMA, KOTOE CHOTEMA ABNHETCH HEVCTORYHBOIN ANS BOCX BOIHDELIX Yiee]. KOr-
/i OTCYTETBYCT MATHMTIGE NoRe nad neTenunaaulo neyerofitnool xowhurypaii. Cucresa
HEJRCTCA QHAKO VCTORMHBOR R NOTEHIMANEHO YCTORWHROM cayuae, a meyveTolivusoli B not-

EHILHANLIO HEYCTORMHEBOM COYYae A48 0YCnnL BRIKMX AWAROCTCH, NOABEPINEMEIN PARNDMEPIIOMY
BPAUIATC I RHOMY JABHFCHHIOND.
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I. INTRODUCTION

A detailed account of the instability of the plane interface between two Newtonian
fluids, under varying assumptions of hydrodynamics and hydromagnetics, has been
given by CHANDRASEKHAR [1]. BHATIA (2] has studied the influence of viscosity on
the stability of the plane interface separating two incompressible superposed con-
ducting fluids of uniform densities, when the whole system is immersed in a uniform
magnetic field. He has carricd out the stability analysis for two highly viscous fluids
of equal kinematic viscosities and different uniform densities. RIVLIN and ERICKSEN
[3] have studied the stress deformation relaxations for isotropic materials. SHARMA
and KUMAR [4] have studied the hydromagnetic stability of two Rivlin—Ericksen vis-
coelastic superposed conducting fluids and the analysis has been carried out for two
highly viscous fluids of equal kinematic viscosities and equal kinematic viscoelastici-
ties. Tt is found that the stability criterion is independent of the effects of viscosity and
viscoelasticity and is dependent on the orientation and magnitude of the magnetic
field.

In all the above studies, the medium has been considered to be non-porous. When
the fluid slowly percolates through the pores of a macroscopically homogeneous and
isotropic porous medium, the gross effect is represented by Darcy’s law, according to
which the usual viscous term in the equations of Rivlin-Ericksen fluid motion is re-

placed by the resistance térm
- i u+ #'i i
k, or) |’

where p and ¢’ are the viscosity and viscoelasticity of the Rivlin—Ericksen fluid, k
is the medium permeability and ¥ is the Darcian (filter) velocity of the fluid.
LAPWOOD [5] has studied the stability of convective flow in hydromagnetics in
a porous medium using Rayleigh's procedure. The Rayleigh instability of a thermal
boundary layer in flow through porous medium has been considered by WOODING [6].
The thermal instability of fluids in a porous medium in the presence of suspended
particles has been studied by SHARMA and SHARMA [7]. SHARMA and KUMAR |[8]
have studied the Rayleigh-Taylor instability of fluids in porous media in the presence
of suspended particles and variable magnetic field. The instability of two viscoelastic
superposed fluids with suspended particles and variable magnetic field in porous me-
dium has been considered by KUMAR [9] who found that the stability criterion is in-
dependent of the effects of viscoelasticity, medium porosity and suspended particles
but depends on the orientation and magnitude of the magnetic field.

The instability in a porous medium of a plane interface between viscous (Newtonian)
and viscoelastic (Rivlin-Ericksen) fluids may find applications in geophysics, chemical
technology and biomechanics and is, therefore, studied in the present paper. The effects of
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uniform magnetic field and uniform rotation, having relevance and importance in geo-
physics, are also considered, These aspects form the subject matter of the present paper.

2. PERTURBATION EQUATIONS

Consider a static state in which an incompressible Rivlin-Ericksen viscoelastic
fluid is arranged in horizontal strata in porous medium, and the pressure p and the
density p are functions of the vertical co-ordinate z only. The character of the equilib-
rium of this initial static state is determined, as usual, by assuming that the system is
slightly disturbed and then by following its further evolution.

Let Ty, ©, ey 6 vi, X, py 1 and i° denote the stress tensor, shear stress tensor,
rate-of-strain tensor, Kronecker delta, velocity vector, position vector, isotropic pres-
sure, viscosily and viscoelasticity, respectively. The constitutive relations for the Riv-
lin=Ericksen viscoelastic fluid are

T,==po;+7y,

T, = 2{;1 +_u’%}eﬁ : (1)

g =l 2L
" alox, oy |

Let #(u, v, w) p, p. € and k, denote the velocity of fluid, density, pressure, medium

porosity and medium permeability, respectively. Then the equations of motion and con-
tinuity for Rivlin-Ericksen incompressible viscoelastic fluid in a porous medium are

plav | L -1 P 0=
— e ke —[4F . ‘:—v —r— —
e[f};ﬂ-ﬁ V}v} [-¥p+pz] kl[uwajv, )

V-5=0, (3)

where (0.0,~g) is the acceleration due to gravity, u{=£] is kinematic viscosity of
4

13

the fluid and u’(= %] is kinematic viscoelasticity of the fluid.

Since the density of a fluid particle remains unchanged as we follow it with its
motion, we have

Ei—f+(ﬁ-v)p=ﬂ. (4)
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Let #(w,v,w)8p and §p denote respectively the perturbations in fluid velocity

(0, 0, 0), fluid density p and fluid pressure p. Then the linearized perturbed forms of
equations (2)—(4) become

p v i 3 b 1) T
S S N k] bl i
— Sp+Edp k (v+u a;]“' (5)
V-5=0, (6)
e (5p)=-wDp 0
ot '
where D=-d-.
dz

Analyzing the disturbances into normal modes, we seek solutions whose depend-
ence on.x, y and 7 is given by

exp (ik.x + ikyy + ni), (8)

where k., &, are horizontal wave numbers, k* =k7 + k_f , and n is the rate at which the

system departs from the equilibrium. For perturbations of the form (8), equations (5) -
(7) give

l—pnu =—ik ép - E—(u + U’n)u, (9
€ ' ky
ipnv=—r’k,.5p—£{u+v'n}v. (10)
£ i k,
| p .
——pnw=—D5p—gﬁp—k—(v-l-vn]w, (1D
€ I
ikt +ikv+ Dw=0, (12)
endp=—wDp . (13)

Eliminating dp between equations (9)—(11) with the help of equations (12) and
(13). we obtain

;—T[D(p Dw)—k*p w]+ ki[D {plv+ v‘n:]Dw}— kzp(u +v'n)w] + %{Dp] w=0. (14)
L
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3. TWO UNIFORM RIVLIN-ERICKSEN VISCOELASTIC FLUIDS
SEPARATED BY A HORIZONTAL BOUNDARY

Consider the case of two uniform fluids of densities, kinematic viscosities ps,v,
(upper, Newtonian fluid) and p,,u, (lower, Riviin-Ericksen viscoelastic fluid) sepa-
rated by a horizontal boundary at z = 0. Then in each region of constant p, constant
v and constant U', equation (14) reduces to

(Dz-ka)wﬂ]. (15)

The general solution of equation (15) is

w=Ae™ + Be™, (16)
where A and B are arbitrary constants. The boundary conditions to be satisfied in the
present problem are as follows:

(i) The velocity w should vanish when z— -+ (for the upper fluid) and
z =+ —== (for the lower fluid).

(ii) w(z) is continuous at z = 0.

(iii) The jump condition at the interface z = 0 between the fluids. This jump con-
dition is obtained by integrating equation (14) over an infinitesimal element
of z including 0, and is

1 , K
g[ﬂzf-}“’z — P, Dwy ];=n + R_{FJDWE —(, + pin)Dw, L.n = "i_n[pa =P ]Wo~ (17)
I

Such a configuration that upper fluid is Newtonian and lower fluid is Rivlin-FErick-
sen viscoelastic should be remembered. Here wy is the common value of w at z=0.
Applying the boundary conditions (i) and (ii), we can write

wo=4e™  (2<0), (18)
wy=Ae™  (2>0), (19)

where the same constant A has been chosen to ensure the continuity of w at z = 0.
Applying the condition (17) to the solutions (18) and (19), we obtain

Eioop 2
[Hk—‘hﬂn] n +k£[”:a: +u,c:r,]n«»gﬁ:[n:-:2 -a,]=0, (20)
l i
where
p - > i £
|.1= : |=£I"| u2=_“i v|=ﬁ
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DISCUSSION

(a) Stable case (z, <r, ). For the potentially stable case (.::r1 <a, ), equation (20) does
not admit of any change of sign and so has no positive root. The system is therefore
stable.

(b) Unstable case (i, >, ). Now for the potentially unstable case (o, > ), the con-

stant term in equation (20) is negative. Equation (20), therefore, allows one change of
sign and so has one positive root and hence the system is unstable.
Therefore, the system is unstable for unstable configuration.

4. EFFECT OF A HORIZONTAL MAGNETIC FIELD

Consider the motion of incompressible, infinitely conducting Newtonian and Riv-
lin—Ericksen viscoelastic fluids in porous medium in the presence of a uniform hori-

zontal magnetic field A(H,0,0)Let i(h,,h,.h.) denote the perturbation in the mag-
netic field, then the linearized perturbation equations are

p v = pf 0 -
——:-—\?'5 5 T j H""""" i 7y 21
o p+gp+ xh kl af]L (21)
V-h=0, (22)
s%?-:?x(ﬁxﬁ), (23)

together with equations (6) and (7). Assume that the perturbation fr-(hx.h).,h; )in the
magnetic field has also a space and time dependence of the form (8). Here u_stands
for the magnetic permeability. Following the procedure as in Section 3, we obtain

1+ v [ o s b - g a0
] 1

where

HH"
“Vaz(p +p.)

is the Alfvén velocity.
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DISCUSSION

() Stable case (@, <@, ). For the potentially stable case (a, <@, ), equation (24) does
not allow any positive root as there is no change of sign. The system is therefore stable.

(b) Unstable ease (¢t > @, ). For the potentially unstable case (a, > e, ), if
AV > gklan ~ar,),

ie if
— (25)

equation (24) does not admit of any change of sign and so has no positive root. The
system is therefore stable.
Butif

2KV < gklon - o), (26)

the constant term in equation (24) is negative. Equation (24), therefore, allows at least
one change of sign and so has at least one positive root. The occurrence of a positive
root implies that the system is unstable.

Thus, for the potentially unstable configuration, the presence of magnetic field
stabilizes certain wave-numbers band, whereas system was unstable for all wave
numbers in the absence of magnetic field.

5. EFFECT OF UNIFORM ROTATION

Consider the motion of an incompressible Rivlin-Ericksen viscoelastic fluid in po-
rous medium in the presence of a uniform rotation 2(0,0,£2). Then the linearized
perturbation equations are

IJ ai". o 2p —_ — p r a —
—=-Va dp+—WxQ)l-—lv+v'— | ¥, 27
£ ot EEEE: E( ) kL( ot :
together with equations (6) and (7).
Following the same procedure as in Section 3 (and CHANDRASEKHAR [1], p. 453),
we obtain
2 2

[n+ -:-(u+u'n):r n[n+k£{u +u'n)]x
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where

k
K= YL ’ (29)
1+

[n+k£(u+u'n]:|z

1

for highly viscous fluid and viscoelastic fluids. Here we assumed the kinematic vis-
cosities und kinematic viscoelasticities of both fluids to be equal, ie., v, =v,=v

[CHANDRASEKHAR [1], p. 443), u; =v', as these simplifying assumptions do not ob-

scure any of the essential features of the problem. Equation (28), after substituting the
value of k¥ from (29) and simplification, yields

FJ r! ’
R = Gl
% kK i,

[[43,:3 ’
+ El; +4QEE+ZE(1+£i]gk(a,—az)}n
k

I 1 1 1

2..1
+[[ E;) +2.§?3}gk{a, —cx:]]=ﬂ. (30)

DISCUSSION

(a) Stable case (a, <cr,). For the potentially stable arrangement (o <), all the

coefficients of equation (30) are positive. So, all the roots of equation (30) are either
real and negative, or there are complex roots (which occur in pairs) with negative reul
parts and the rest negative real roots. The system is therefore stable in each case.

(b) Unstable case (@, > ¢, ). For the potentially unstable arrangement (¢t >, ). the

constant term in equation (30) is negative. Equation (30), therefore, allows at least
one change of sign and so has at least one positive root. The system is therefore up-
stable for potentially unstable case.

Thus the effect of uniform rotation on the motion of an incompressiblc viscous
fluid overlying Rivlin-Ericksen viscoelastic fluid through a porous medium mikes the
system stable for potentially stable cases and unstable for potentially unstable cases,
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